
1

IMPLEMENTING TOOLS FOR SUPPORTING LEGAL REASONING

By

David Bareham

A DISSERTATION

Submitted to

The University of Liverpool

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

24th September 2021

2

ABSTRACT

IMPLEMENTING TOOLS FOR SUPPORTING LEGAL REASONING

By

David Bareham

This project brings together the research which has been conducted in the University of

Liverpool on the ANGELIC project into a single interactive tool. The ANGELIC project has

provided a methodology for implementing a system to determine the outcome of legal cases

based upon legal domains constructed from precedent cases. This methodology draws from

prior work into ADFs (Abstract Dialectical Frameworks), which are sets of nodes with directed

links used to represent the factors of legal domains and the relationships between them. Several

domains had been individually modelled and evaluated using this methodology, but this had

not yet been brought together in a unified tool to be used in a practical setting.

The tool produced enables the user to query a legal case for one of the domains modelled by

answering a number of questions instantiating the case as a list of factors. These cases are then

evaluated according to the relevant ADF graph using a depth-first search providing a case

outcome. The result of the case is predicted, and a list of reasons for why that outcome was

reached is generated, alongside a visualisation highlighting the relevant factors for the decision.

The tool also allows the user to create ADFs for new legal domains or edit existing one.

The project was successful when evaluated in regard to accuracy, explainability and usability.

The tool was able to replicate the results of the previous implementation within Prolog,

achieving the same accuracy, provide a transparent outcome with clearly stated reasons and

visualisation for explainability as well as aiding usability by providing a comprehensive user

manual and intuitive user interface.

3

4

DECLARATION

I hereby certify that this dissertation constitutes my own product, that where the language of

others is set forth, quotation marks so indicate, and that appropriate credit is given where I have

used the language, ideas, expressions, or writings of another.

I declare that the dissertation describes original work that has not previously been presented

for the award of any other degree of any institution.

Signed,

5

ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor Katie Atkinson whose guidance and advice has

been crucial in being able to complete this project. Thanks also to my fiancée for her endless

support.

6

TABLE OF CONTENTS

LIST OF FIGURES ... 8

Section 1 Introduction ... 9

1.1 Legal Domains ... 9

1.2 Related Work.. 10

Section 2 Ethical Use of Data .. 14

Section 3 Design.. 15

3.1 Design Outline.. 15

3.2 Methodology and Technology ... 16

3.3 Backend Design.. 16

3.3.1 Node() Class ... 18

3.3.2 MultiNode() Class .. 18

3.3.3 ADF() Class Design ... 19

3.4 Frontend Design ... 20

Section 4 Realisation .. 22

4.1 From Prolog to Python ... 22

4.1.1 How Prolog works for an ADF .. 22

4.1.2 ADF Implementation in Python ... 24

4.1.2.1 ADF.. 24

4.1.2.2 The Reject Condition ... 27

4.2 Software Produced ... 29

4.2.1 Frontend .. 29

4.2.1.1 Linking the frontend to the backend .. 31

4.2.1.2 Frontend Example .. 31

4.2.2 Querying an ADF .. 32

4.2.3 Creating an ADF ... 33

4.2.4 Editing an ADF.. 34

Section 5: Testing/ Results... 36

5.1 Test Data .. 36

5.2 Test 1: ADF Accuracy.. 38

5.3 Test 2: Save/Import .. 40

5.4 Test 3: UI Testing ... 40

7

Section 6 Evaluation .. 41

6.1 Accuracy... 41

6.2 Explainability ... 43

6.3 Usability ... 44

6.4 Learning Points .. 45

6.4.1 User Interface .. 45

6.4.2 Saving Data .. 46

6.4.3 Unit Testing .. 46

Section 7 Professional Issues ... 47

7.1 IT for everyone ... 47

7.2 Say what you know, learn what you don’t ... 47

7.3 Respect the organisation... 47

7.4 Keep IT real .. 48

Section 8 Conclusion .. 49

8.1 Further Work .. 49

REFERENCES ... 51

APPENDIX A – Design Documentation .. 52

APPENDIX B – UI ... 58

APPENDIX C §5.1 Investigation .. 67

APPENDIX D: Test Data .. 69

APPENDIX E - Visualisations .. 79

APPENDIX F – User Manual ... 83

APPENDIX G – Project Log ... 88

APPENDIX H – Code Listings ... 89

H.1 INSTALLATION AND RUN GUIDE .. 89

H.2 MainClasses.py.. 89

H.3 UI.py .. 107

H.4 WildAnimals.py .. 145

H.5 TradeSecrets.py ... 147

H.6 FourthAmendment.py.. 154

H.7 test_data.py .. 161

8

LIST OF FIGURES

Figure 1- Part of Wild Animals as generated in the visualisation function described in §8.2.

.. 12

Figure 2 - UML Class Diagram of the Backend .. 17

Figure 3 - A mock-up of the user interface. ... 21

Figure 4 - ConfidentialityAgreement node from the Prolog [5].. 23

Figure 5 - Logical operator evaluation code ... 26

Figure 6 - The evaluateTree() method. .. 27

Figure 7 - PrivateContentsCarriage node from Automobile Exception in Prolog [5]. 29

Figure 8 - The UI() class ... 30

Figure 9 - Create domain screen ... 31

Figure 10 - Outcome Screen .. 33

Figure 11 - A sample of the data saved to a ‘.xlsx’ file for Wild Animals. 35

Figure 12 - Case input data for Carroll v. United States in Prolog. 37

Figure 13 - Case input data for Carroll v. United States in Python. 37

Figure 14 - query_adf() method ... 39

Figure 15 - Additional statements from California v. Carney. .. 42

Figure 16 – Wild Animals ADF as generated within the software for the case Keeble v.

Hickeringill. ... 44

https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369764
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369764
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369765
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369766
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369767
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369768
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369771
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369772
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369773
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369774
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369777
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369778
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369779
https://d.docs.live.net/68da1a5076026e32/Documents/Dissertation.odt#_Toc83369779

9

Section 1 Introduction

The ANGELIC project (ADFs [Abstract Dialectical Frameworks] for kNowledGe

Encapsulation of Legal Information from Cases) developed a methodology for determining

the outcome of legal cases based upon legal domains constructed from precedent cases and

other sources. My project aims to bring the research together into a unified tool and meet the

following key objectives:

• Creating a tool providing outcomes for cases in four legal domains for both pre-

defined and user-defined cases.

• Allowing the user to edit existing ADFs and create new ones from scratch.

• Evaluating the tool’s success against the level of accuracy it achieves, its usability

and explainability regarding its outcomes.

1.1 Legal Domains

The four domains the tool will capture are briefly explained here.

• Wild Animals: These are cases in which the plaintiff’s chasing of wild animals was

interrupted by the defendant [5].

• US Automobile Exception to The Fourth Amendment: Centres on cases which

involve searching a moving automobile without a warrant in exception to the Fourth

Amendment which protects persons against unreasonable searches and seizures [5].

• Trade Secrets: This domain concerns information, which is unknown by competitors,

providing a company an economic advantage that is subject to reasonable efforts to

maintain its secrecy [5].

10

• Noise-Induced Hearing Loss (NIHL): Within this domain are cases in which it is

alleged the claimant’s hearing loss is due to a previous employer’s negligence [7]

1.2 Related Work

Within the literature concerned with defining methodologies for designing systems to

determine the outcome of legal cases, I found there to be two distinct approaches used which,

broadly, can be divided into data-driven methods and knowledge representation methods.

A representative example of the data-driven approach can be found in [1] which leverages

advances in Natural Language Processing (NLP) and Machine Learning (ML) to predict

whether particular articles of the European Convention on Human Rights (ECHR) have been

violated given textual evidence from the case in relation to the relevant pieces of law. In this

paper they derived N-grams or word clusters from the text as their features for use in a

regularised linear Support Vector Machine (SVM) achieving an average accuracy of 79%.

Another study used SVM [9] to achieve a slightly lower accuracy of 75% in the ECHR

domain. Other data-driven approaches within the field have used a variety of machine-

learning techniques, such as Convolutional Neural Networks, to predict whether a court of

appeal would affirm or reject the lower court’s decision, achieving an accuracy of 79% [13]

or [10] which achieved an accuracy of 70.2% on US Supreme Court judgements from 1816-

2015 using feature engineering and a random forest classifier.

Despite these approaches all achieving an accuracy that would be promising in other

domains, [2] emphasises that in the legal domain it would be unacceptable for over 20% of

cases to be decided inaccurately. If this technology was going to be adopted within the legal

sector, the inaccuracies need to be greatly reduced. Perhaps the most crucial critique

regarding the approach in [1] and [9] is the lack of explainability, as affirmed within [2], that

11

no explanation is provided in the study other than a list of the most frequent words in order of

their weights in the SVM.

This need for explainability and transparency is a key pillar of legal decision making, which

is affirmed as a positive right within the European Union’s Charter of Fundamental Rights,

which explicitly states, “[…] the obligation of the administration to give reasons for its

decisions.” [3]. Considering this obligation, ‘black box’ ML methods such as deep learning

appear prima facie unsuitable for the task of predicting legal decisions, if such techniques are

to be applied within the sector, as methods such as Deep Neural Networks, for example,

typically feature a degree of complexity so great that the specific weights for individual

features cannot be determined for all predictions generated [4].

In light of these issues the ANGELIC methodology seeks to incorporate advances in

knowledge representation to address the explainability gap and provide transparency in the

AI decision-making process. This approach follows from a larger body of work focusing on

legal case-based reasoning such as HYPO [12] or CATO [11] which use factors based upon

the absence or presence of relevant facts within a case. Work such as CATO is theoretically

underpinned by the fact that the law does not consist merely of a set of rules but also of a

body of previous cases and legal decisions [14]. A new case must be decided within the

context of previous decisions, which form legal precedents, that can be used as the basis of a

legal reasoning system.

Following on from this idea [5] sets out the foundation for the approach we will focus on.

This methodology utilises an abstraction of Dung’s [6] abstract argumentation frameworks

called Abstract Dialectical Frameworks (ADF). An ADF can be defined, as per [5], as a set of

nodes with directed links between them which contain acceptance conditions local to each

node. These nodes, in a similar manner to CATO, take the form of a hierarchical list of

12

factors with the base-level factors as the children of more abstract factors [5]. The directed

links take the form of attacking or supporting links. If a child node has an attacking link with

its parent, then that factor can be seen as counting against the acceptance of the parent, whilst

a supporting link counts towards that parent being accepted. Thus, these children form the

basis of the acceptance conditions for the parent nodes to be considered absent or present

within the ADF. Acceptance conditions within an ADF are structured with nodes as the

operators and logical conditions such as ‘and’, ’or’ and ‘not’ as the operands.

To better understand the way in which an ADF operates, let us use an example of a node and

its acceptance conditions within Wild Animals [5]. Figure 1 shows the AntiSocial node

whose children are DMotive (Defendant Motive), Nuisance and Impolite. As stated earlier,

the acceptance condition of a parent node is formed from the children nodes. In this case the

acceptance condition is ‘(Nuisance or Impolite) and (not DMotive)’. This condition must

be determined after legal analysis considering the precedent cases and statutes governing the

domain. If the acceptance condition is satisfied, then the node to which it belongs is accepted

as a factor within the case and this drives the decision-making process.

 Figure 1- Part of Wild Animals as generated in the visualisation function

described in §8.2.

13

The decision-making process begins by instantiating a list of base-level factors corresponding

to facts in that case. These factors need to be chosen by a person with some familiarity with

the case and this may be done through the use of ‘Yes’ or ‘No’ questions to establish if each

base-level factor is absent or present within the case. Once these factors are assembled, the

ADF proceeds by ascending through the acceptance conditions of the nodes until an outcome

is reached. Due to its inherent structure as a set of hierarchical factors it can output the factors

which directly caused the achieved outcome. This output provides the transparency and

explainability in an AI-driven process which the data-driven methods do not achieve due to

the complexity of their ‘black box’ processes.

Another comparison between the two approaches outlined can be made with respect to [2]

who were able to achieve a 100% accuracy in a set of 10 test cases taken from the same

domain, ECHR, as [1]. Despite the small number of test cases, it is a promising

demonstration of the power of the knowledge-representation approach, compared to the data-

driven ML approach, in offering the explainability required.

14

Section 2 Ethical Use of Data

The data used in this project is primarily from the public domain. The case data for Wild

Animals, Trade Secrets and Automobile Exception was gathered from freely available public

court records. Given the public nature of the data, there are no ethical issues with these

domains. This data and the accompanying ADFs have been obtained from [5] which is one of

the primary papers underlying the implementation of this tool. However, NIHL [7], was

developed with an industry partner of the University of Liverpool. Due to non-disclosure

agreements, the ADF for this domain is not able to be published within this paper. The

confidentiality of the case data for the domain also meant I was unable to obtain any real

cases to test with my implementation so instead relied on a few synthetic cases which I

constructed.

15

Section 3 Design

This section will provide a statement of the project requirements and outline the full design of

the system’s frontend and backend (see Appendix A for the original design documentation).

3.1 Design Outline

The system design aims to realise several key objectives and implement the required features

necessary to meet these. The core features which the design aims to realise are:

• Query an existing ADF: The user will be able to query an existing ADF by

answering a number of questions corresponding to each of the base-level factors in

the ADF. After the base-level factors have been generated, the tool should generate an

outcome, and show the different factors which went into making the decision.

• Editing an existing ADF: The user will be able to edit and update existing ADFs in

light of new legal precedents.

• Creating an ADF: This tool will allow the user to create an ADF for a new legal

domain defining the factors, relationships, acceptance conditions, acceptance/rejection

statements and questions instantiating the base-level factors.

• User Interface: This implementation will provide a clear graphical user-interface

which will allow the user to easily use any of the aforementioned features.

• Saving/Importing: This feature will save the ADF into a ‘.xlsx’ file which can then

be read back into the tool instantiating the saved ADF.

• Reporting: This function will provide some basic information about each ADF, such

as how many nodes there are and the ability to generate visualisations for each case

outcome.

16

3.2 Methodology and Technology

Whilst the initial implementations from prior research were achieved in Prolog [5], due to the

declarative nature of the acceptance conditions, I will use Python 3 because I believe it offers

the flexibility and robustness necessary in developing the entire tool from start to finish. For

the frontend I have used Tkinter since it is well documented and offers a sufficient degree of

customisation.

The Agile methodology has been used throughout the software development process to

develop functional systems quickly, incrementally iterating and expanding the features

available [8]. This allowed me to seek feedback from my supervisor regularly and easily

implement any proposed changes for the next iteration, ensuring that the project did not stray

from the desired outcome.

3.3 Backend Design

The backend design is centred around the core process of creating and generating an ADF

within the system. In designing this, I have followed the Object-Oriented Design paradigm.

The three primary classes in the backend are:

• Node() - representing the individual factors as nodes with their associated acceptance

conditions etc.

• MultiNode() - inheriting from the Node class by adding the ability to create nodes

instantiated by multiple choice questions. This class was added later on in the

development as per the explanation in §3.3.1.

• ADF() - modelling the ADF in terms of the individual nodes’ relationships with one

another and providing core functionalities such as tree traversal and saving.

The structure of these classes is displayed in a UML class diagram in Figure 2.

17

Figure 2 - UML Class Diagram of

the Backend

18

3.3.1 Node() Class

The class’s parameters will take in the factor name, acceptance conditions and their

corresponding statements. This class can be used to initialise non-leaf factors or base-level

factors. The main difference is that a base-level factor needs an associated question to be

presented to the user when determining a factor’s presence as part of the case, whereas the

absence or presence of non-leaf nodes is determined solely by their acceptance conditions.

A key part of the Node() class is the conversion of the acceptance condition from infix to

postfix notation. This is due to the challenge of parsing logical conditions which may contain

parenthesis such as in “NOT (NotCaught) OR (Vermin and HotPursuit)” [1]. The advantage

of postfix notation is that it enables logical statements to be expressed without parenthesis

whilst maintaining operator precedence, e.g., 'InfoKnown or InfoAvailiableElsewhere' →

'InfoKnown InfoAvailiableElsewhere or'. Postfix notation is more computationally efficient

and easier to parse in determining whether the relevant condition has been satisfied or not

(see Appendix A for the pseudocode).

3.3.2 MultiNode() Class

While the Node() class is suitable for the majority of cases, there are a couple of domains,

such as Automobile Exception and NIHL, for which it proved insubstantial during the

implementation due to the nature of some of their base-level factors. Most base-level factors

within an ADF have a Boolean nature and are either true or false, but others are too complex

to be captured with such a binary, for instance the PermittedDuration node from Automobile

Exception. This node concerns how long an automobile was permitted to stay in a stationary

location. This can be answered with ‘short stay’, ‘long stay’ or ‘overnight’. To implement

this in the original Node() class would require treating PermittedDuration as a non-leaf factor

with the answers such as ‘short stay’ as its children and subsequently base-level factors.

19

Nevertheless, that design would require a question for each of the base-level factors, adding

unneeded repetition to the question-base.

To avoid this, I introduced the MultiNode() class: a child of the Node() class inheriting the

same methods but differing in its initialisation. MultiNode() has an attribute named

‘answers’, which is composed of the names of the children nodes, that stores the multiple-

choice answers to the question asked. Thus, base-level factors are instantiated by a single

sub-factor, such as ‘short stay’, or even a combination of sub-factors. Consequently, this class

acts as a blend between a leaf node and a non-leaf node, requiring a question as part of its

initialisation whilst also needing an acceptance condition.

3.3.3 ADF() Class Design

This class will take a name as its only compulsory parameter, the other attributes will be

initialised as empty lists or dictionaries which are then modified with the introduction of

Node() instances into the ADF. A dictionary has been chosen as the data type to store the

nodes constituting the ADF with the node name as the key and the node object instance as the

value. This allows the ADF() to be flexible in adding new nodes, deleting old nodes, and

editing existing nodes as specific node instances can be found quickly using their key.

The core algorithm which drives the functionality of this class is evaluateTree(). This method

only takes the case as an input and provides the prediction of the outcome as an output. It

begins by generating a dictionary of non-leaf nodes by iterating through each node in the

ADF and determining whether it has children or not, since a non-leaf node must by

definition, always have children.

1. For each non-leaf node which has not already been evaluated, the algorithm checks

whether its children have been evaluated before or whether the children are all base-

20

level factors. In the first iteration, for instance, this would result in the algorithm

initially evaluating a node where all its children are base-level factors. This creates the

effect of ascending the ADF from the base-level factors, through the intermediary

factors and up to the final decision node, which reaches an outcome.

2. Next, the algorithm tests the acceptance conditions of the chosen node against the

base-level factors originally supplied in the case and any additional intermediary

factors which may have been added previously. If the acceptance condition is

satisfied, it adds that node’s factor to the factors of the case and the corresponding

statement accompanying the condition to a list of statements, which will later be

output to the user. If the acceptance condition is not satisfied, then the corresponding

rejection statement is appended to the statements. In either case the node is removed

from the list of non-leaf factors to be evaluated.

3. It returns to step 2 until there are no nodes left which have not been evaluated, aside

from the decision node in which case it evaluates that node. After the decision has

been determined, the algorithm ceases, and the outcome is shown to the user.

3.4 Frontend Design

The frontend design is focused around providing a clear user experience. Figure 3 shows the

original wireframe of the user interface from the design document. Whilst there have been

changes made to its design since this wireframe was created, it still shows the core pathways

21

the user can take through the software. Those pathways are domain creation, editing and

querying.

Figure 3 - A mock-up of the user interface.

22

Section 4 Realisation

This section aims to explain how the backend and frontend of the software were realised

within Python (see Appendix B for the full code listing).

4.1 From Prolog to Python

The original realisations of the ANGELIC project for Wild Animals, Trade Secrets and

Automobile Exception were all constructed within Prolog [5]. Prolog is a language which

was created with the goal of using logic to represent knowledge by using a subset of predicate

logic [15]. This lent itself to the structure of the ADF, which consists of acceptance

conditions expressed in predicate logic. The authors of [5] explicitly write that “The Prolog

program was formed by ascending the ADF, rewriting the acceptance conditions as groups of

Prolog clauses to determine the acceptability of each node in terms of its children.” While

this approach was beneficial for ensuring the methodology worked, if I was to transfer this

into a fully featured tool, with the facility to generate an ADF without needing to explicitly

hard-code it, I needed a language which would allow declarative expression whilst also

supporting other paradigms such as object-oriented programming. Python has been able to

provide the flexibility required in creating the various features of the software, but in

attempting to capture the declarative nature of Prolog there have been some challenges.

4.1.1 How Prolog works for an ADF

To understand how Prolog’s methods were implemented into Python it is important to

understand how the ADFs were originally constructed within Prolog. The following example

aims to illustrate this.

Let us focus upon a specific node from Trade Secrets called ConfidentialityAgreement (f121

in the Prolog). The acceptance condition provided in [5] for this node is – ‘Accept

23

ConfidentialityAgreement [f121] if AgreedNotToDisclose [f4] and (not

WaiverOfConfidentiality) [f23] otherwise reject ConfidentialityAgreement’. In Prolog this is

first interpreted into a rule. Rules constitute a consequent, followed by the symbol ‘:-’ (read

as ‘if’) and the antecedent. In our case the consequent is ConfidentialityAgreement, and the

antecedent is its acceptance condition. The acceptance condition can be represented as a

series of facts which are statements describing object properties or object relations [15]. As

shown in Figure 4, the antecedent is represented by ‘member(f4, Factors),

not(member(f23,Factors))’. This can be read as checking whether AgreedNotToDisclose is a

member of the list of Factors and checking that WaiverOfConfidentiality is not a member of

the list. The conjunctive nature of this clause is captured in virtue of the conditions being on

the same line separated with commas. To capture disjunctive conditions, one would simply

have a separate rule for each clause in the order they wished the statements to be considered.

When a rule’s antecedent is evaluated as ‘True’ the Prolog program performs any actions

associated with this. In Figure 4 it will print the statement ‘there was a confidentiality

agreement’ to the user and will add ConfidentialityAgreement to the list of factors (this is

done with ‘[f121|Factors]’). Whereas, if the condition is rejected the program will show

‘there was no confidentiality agreement’ and will not add the factor to the list.

Prolog is a declarative language whose control structure needs to be explicitly stated. In our

example, whether the node is accepted or not, the program will move on to evaluating

Figure 4 - ConfidentialityAgreement node from the Prolog [5].

24

NoticeOfConfidentiality (f115). The manner in which it conducts this search is called a

Depth-First Search, which is a strategy in which “The search goes down the graph until it

reaches a node without successor. It then backtracks from the bottom to the last node that has

successors.”[15]

4.1.2 ADF Implementation in Python

The following sections will detail the challenges faced when converting the Prolog code to

Python and how I tried to solve these issues.

4.1.2.1 ADF

When implementing the ADF within Python the first challenge was how to model the logical

operators. Whilst Python does natively support logical operators, using these would require

me to have hard-coded each acceptance condition individually which was exactly what I was

trying to avoid in building a flexible ADF creation engine. To facilitate the future

construction of ADFs I needed the acceptance conditions to be able to be input by a user with

the nodes as the operands accompanied by logical operators.

As stated within §3.3.1, I chose to translate each user inputted acceptance condition into

postfix notation to allow me to parse them with greater ease which is evaluated as follows

within postfixEvaluation(), see Figure 5:

• The acceptance condition’s tokens are iterated through, adding them to the stack.

• If the token is a logical operator, it pops the last one or two operands from the stack to

evaluate whether the condition is true or false.

• checkCondition() checks whether the operands are present in the case or not,

depending on the operator, or if the tokens are Boolean values of True or False. This

is necessary because the output of the function is always True or False (and this

25

output is added to the stack) as frequently an operand corresponding to a node will be

evaluated alongside a token which equals True or False.

An example will help to illustrate how this works:

If we have the base level factor A in our case and our infix acceptance condition is ‘(A or B)

and not C’, this will become ‘A B or C not and’ in postfix form. The algorithm would first

evaluate the condition ‘A or B’ and since A is within our case this would return True to the

stack meaning our stack is now ‘True C not and’. Next ‘not C’ would be evaluated and since

only A is within our case this would also return ‘True’. Our stack is now ‘True True and’

meaning the final condition to be evaluated is ‘True and True’. A truth table will tell us that

the conjunction of two truth values is ‘True’ in which case the acceptance condition is

accepted and the algorithm proceeds.

26

This structure is able to mimic Prolog’s use of logical operators in returning the correct

outcome for even the most complex acceptance conditions. However, this code only succeeds

in evaluating the acceptance conditions but not in capturing the control procedure found

within the Prolog. Figure 6 describes within its comments the evaluateTree() function. This

function mimics Prolog’s depth-first search by only evaluating nodes who have no children

which are not base-level factors, or nodes whose children are all base-level factors or factors

which have already been evaluated.

Figure 5 - Logical operator evaluation code

27

Figure 6 - The evaluateTree() method.

4.1.2.2 The Reject Condition

A group of nodes from Automobile Exception caused me to rethink how I implemented the

acceptance conditions. A limit of my implementation was that it only allowed a node to be

accepted if a condition was met but did not allow a condition to be rejected if it was met. In

modelling some factors we may want to reject them outright if one of their children is

present.

In Figure 7 we can see the Prolog implementation of the node PrivateContentsCarriage

(af131) from Automobile Exception with the base-level factors ProtectionType (bf312) and

GoodsCarried (bf311). This node’s first acceptance condition is: if ProtectionType and

28

GoodsCarried then PrivateContentsCarriage is accepted, and it prints “private contents”. This

is trivial to model in my implementation, the difficulty comes with the second acceptance

condition: if GoodsCarried then reject and do not add PrivateContentsCarriage to the list of

factors.

If GoodsCarried was present and ProtectionType was not, in my implementation only

modelling the first condition, it would show the default statement of ‘contents are not

considered private’. While this does not affect the case outcome, this information is a

contradiction, as if GoodsCarried was accepted, it would display the message ‘private goods’

to the user, so how could there be ‘private goods’ yet ‘contents are not considered private’?

I addressed this issue by:

• Designing a rejection condition using the keyword ‘reject’ in front of an “acceptance

condition”. If present, the software will not add the node to the list of factors but will

print its corresponding statement as if it had been “accepted”.

• ‘reject’ causing a flag called ‘self.reject’ to be set to True if the keyword is present

when evaluating a condition.

• The corresponding statement of the condition being printed if the flag is set to True

and the node not being added to the list of factors.

After implementing this feature, I could now model the second acceptance condition as

‘reject GoodsCarried’ with the corresponding statement ‘private contents but not protected’.

This nullifies the contradiction since the output simply expands upon GoodsCarried statement

of ‘private contents’, to qualify them as unprotected rather than contradicting it.

29

Figure 7 - PrivateContentsCarriage node from Automobile Exception in Prolog [5].

4.2 Software Produced

The following section will provide an overview as to what some of the key functionalities

achieved look like.

4.2.1 Frontend

The Frontend was implemented in the Python library Tkinter and is built using a series of

classes such as CreateDomain(), which creates a page in which the user can specify the name

of the domain they wish to create. These classes inherit from Tk.Frame which acts as a

container for a group of widgets. To create each page the required inputs are parent,

controller, and info. Parent initialises the Tk.Frame class for the page and controller allows

the page to access the methods of the controller class providing the core functionality in the

UI. Info is explained in §4.2.1.1.

The controller class in my implementation, shown in Figure 8 as the UI() class, provides

methods such as frameCreation() and show_frame() which allow the display and creation of

new pages. This implementation was not straightforward within Tkinter since there is no

direct functionality for changing pages. Instead, I was required to implement a show_frame()

method utilising the Tkinter function .tkraise, which allows one page to be lifted on top of

another, creating the effect of changing between pages. To keep track of these pages I used a

30

dictionary with the key as the class name for the page and the value as the page object itself.

This data structure was particularly useful in helping to escape potential memory issues

which may arise from stacking many pages on top of each other. Each time, for example, an

instance of EditDomain() is created it overwrites the previous instance in the dictionary. As

the old instance is no longer referenced within the program, Python’s automatic garbage

collection removes the original object.

Figure 8 - The UI() class

31

4.2.1.1 Linking the frontend to the backend

Linking the backend to the frontend involved two main steps:

1. Importing the backend in MainClasses.py and the ADF files into UI.py.

2. Creating a class named Information() which holds all the key information needed to

be shared between classes such as the case factors, the ADF data etc.

4.2.1.2 Frontend Example

The design of the frontend is minimalist. Figure 9 shows a screenshot from the user-interface

which helps to demonstrate the design aesthetic I chose to aim toward. Each screen shares the

same light blue background with grey buttons and black text. Red is used for the question

marks to demarcate their importance as tool tip help pop-ups. In Figure 9 you can see a

yellow box which informs the user that a domain name should have no spaces between the

words (see Appendix C for more UI screenshots).

 Figure 9 - Create domain screen

32

4.2.2 Querying an ADF

The most central feature of the software is to allow the user to reach an outcome in a case

within one of the four legal domains encapsulated by the ADFs. This proceeds in the

following manner:

• The user chooses one of the predefined test cases for each domain, or they can query

their own case. For cases which are not pre-defined the software will present

questions one at a time to the user in a non-randomised order.

• The questions establish which base-level factors are present using checkboxes to

indicate ‘Yes’ or ‘No’.

• Sometimes, as discussed in §1.2, binary options are not suitable so the software also

allows multiple-choice questions which are displayed to the user as square tick-boxes

from which many or no answers can be selected.

• The ADF is then queried to determine the outcome of the case, providing an outcome

screen similar to the one in Figure 10, of the case Arco Industries v Chemcast in

Trade Secrets. This screen provides the user with a clear list of the reasons which

enabled the decision to be made.

• This continues until the final decision node, which convention within this software

dictates are called ‘Decide’, determines the final outcome based on its acceptance

condition.

33

4.2.3 Creating an ADF

For the user this process begins after initialising the ADF() class by setting a name for the

ADF and then adding either a ‘True/False Node’, corresponding to the Node() class, or a

‘Multiple Choice Node’, corresponding to the MultiChoice() class. In most circumstances the

user will use the ‘True/False Node’ but in some cases, the ‘Multiple Choice Node’ will need

to be used, as explained within §3.3.2.

After all the nodes within the ADF have been added, the software prompts the user to input

the questions which will be asked (when the ADF is queried) to establish whether the base-

level factors are absent or present. The software automatically determines what is and is not a

base-level factor, prompting the user only to set questions for those it has identified.

Following the questions having been set you can choose the order you wish them to be asked

in. This is useful since it allows questions on related topics to be asked in logical groups,

Figure 10 - Outcome Screen

34

making it easier for the user to follow a logical process and provide answers which are

correct for their case.

4.2.4 Editing an ADF

This feature allows the ADFs, whether predefined or user-created, to be modified. The ability

to modify ADFs is important for a number of reasons. An ADF might require updating due to

a new ruling overwriting previous precedent, an acceptance condition not adequately

modelling its associated factor, or new domain knowledge requiring additional nodes. Due to

the ADFs’ structure, storing the nodes in a dictionary, they are very flexible to be adapted

within the UI. For instance, nodes can be created or deleted, question orders changed,

acceptance conditions and corresponding statements added or modified, and questions set for

new or existing base-level factors.

One of the key functionalities of this feature is the save function. This allows the user to save

an ADF which has been created or edited within the tool. It writes the key data in the ADF to

a ‘.xlsx’ file, a spreadsheet which can later be imported back into the tool. The tool will then

read the data and instantiate an ADF from it. In order for this process to be consistent, there

are various rules in the backend which govern how the save file of the ADF is structured. For

example, a row representing a node will always have the first column containing the name

and the subsequent columns containing the acceptance conditions and their accompanying

statements (in an alternating fashion), with the last column containing the statement to be

shown if the acceptance condition is false. These rules, and others, ensure that the ADF

generated from the imported file is consistent with what the user has created within the tool.

An example of the generated save data can be found in Figure 11.

35

Figure 11 - A sample of the data saved to a ‘.xlsx’ file for Wild Animals.

36

Section 5: Testing/ Results

This section will detail the testing of the software produced, the data used, and the results

obtained. There are three tests which have been performed: a test to determine whether the

same case outcomes and factors are reached within my implementation as the Prolog; a test to

determine whether the save/import functionality works correctly; and finally, a description of

the manual testing which occurred for the user interface.

5.1 Test Data

In order to ensure the ADFs function correctly within my implementation, it is crucial to test

whether they can replicate the results previously achieved within the original Prolog

programs. For this, I used the same cases as the Prolog, represented with the same base-level

factors, which would act as the input in the tests. Each domain has a different number of

cases: Wild Animals has 5, Trade Secrets has 32, Automobile Exception has 9 and NIHL has

31.

The input data required processing to be converted into a form my software would

understand. The original cases used an abbreviation of the base-level factors such as ‘ft011c’

instead of ‘car’, whereas my implementation required that the inputs be strings and that they

refer to the full node’s name. These cases were then stored in a function called cases() which

is present within the Python file instantiating each domain e.g. TradeSecrets.py. The base-

level factors for these cases were determined in [5] for the public domain data via legal

analysis of the cases.

1 The expected outcome data for NIHL was created manually, going through the various acceptance conditions

by hand until a result was obtained.

37

Figure 12 - Case input data for Carroll v. United States in Prolog.

Figure 13 - Case input data for Carroll v. United States in Python.

After processing the inputs, I was required to collect the expected outcomes from the Prolog.

This data was extracted by running the Prolog for each of the aforementioned cases and

retrieving their results which were then converted, in the same manner as the input data, and

stored separately in the expectedOutcomeCases() function.

Whilst for the most part the data collection was straightforward there were a couple of cases

which caused some issue which I will detail here.

The first issue concerned the output data of the case Coolidge v. New Hampshire (cvnh) from

Automobile Exception. When this case was run within the Prolog of the domain it would not

generate an outcome, instead stopping part way through and returning ‘false’ due to a bug in

the code. Consequently, this case has been excluded from the unit tests detailed in the next

section as I was unable to obtain a reliable expected outcome.

The second concerned a couple of amendments I was required to make to the test data to

account for some inaccuracies in the Prolog. The primary example concerns the

LegitimatelyObtainable (f120) node. During some early tests of my software, I noticed a

clear discrepancy in outcomes between my implementation and the Prolog’s in regard to

whether LegitimatelyObtainable was present in the final outcome or not, despite having

checked multiple times that the acceptance conditions were identical.

38

I found that in eight cases my implementation triggered LegitimatelyObtainable as a factor

and in none of the cases was this triggered in the Prolog (see Appendix C for full details).

Using Prolog’s trace feature I was able to determine that this was due to a bug in the Prolog

which evaluated LegitimatelyObtainable before its sole child node InfoKnownOrAvailiable

(f105), meaning that LegitimatelyObtainable could never be accepted. Consequently, in any

case which triggered InfoKnownOrAvailiable in the Prolog I manually appended

LegitimatelyObtainable to the expected outcome in order to keep the expected outcome data

consistent to how the Prolog was created to function. I also added the final outcome statement

from the Prolog at the beginning of the expected outcome data to compare this statement with

the final one generated by my software. For example, in the case Keeble v. Hickeringill I

added “find for the plaintiff, find against the defendant”.

There were also a couple of instances of typos in the input data within the Prolog I corrected,

such as in the case US v. Chadwick from Automobile Exception, in which ‘ft032pl’ is not

present within any acceptance condition, but ‘ft032ps’ is, so I interpreted the former as the

latter when constructing the input data and re-ran the Prolog with this modification to obtain

a more accurate outcome. However, in one instance in Chambers v. Maroney, I could not

identify what the factor ‘ft015w’ was supposed to refer to, so left it as ‘ft015w’ in the input

data.

All the data used in testing can be found in Appendix E.

5.2 Test 1: ADF Accuracy

The first test conducted was to determine whether the ADFs I had modelled functioned

correctly and obtained the same results as the original Prolog implementations. I designed

39

unit tests for this purpose2 Each test is for a different legal domain, and they all pass their

ADF, cases and expected outcomes into the method query_adf() of the Tests() class. This

method, as shown in Figure 14, processes some small aspects of the data and conducts two

core tests. Firstly, it checks whether the outcome statement produced in the Python is the

same as the outcome statement of the Prolog. Secondly, it takes the set of the case factors

after they have been evaluated and checks whether they are equal. The reason it converts

them into sets is because otherwise the order is considered when checking equality between

them, and whether the factors are generated in the same order is not a relevant factor here.

All the tests passed for each of the cases in each of the four domains, meaning they all

achieved the same results as the Prolog implementations.

2 The library unittest was used for this.

Figure 14 - query_adf() method

40

5.3 Test 2: Save/Import

The second test conducted was to ensure that the save/import functions of the software

performed correctly. This, like the accuracy test, was done as part of the unit tests. These

tests, which all call the save_import() method, save each ADF into a ‘.xlsx’ file, and then

import the ‘.xlsx’ file as a new ADF. These two ADFs are then compared to check they have

the same nodes as each other, that the question orders set within the ADF are preserved and

finally that the imported ADF achieves the same outcome as the original ADF in regard to the

tests performed in §6.2.

All the tests passed for each of the four domains, demonstrating the saving/import functions

ability to capture and read the ADFs as raw data within a ‘.xlsx’ file.

5.4 Test 3: UI Testing

Extensive manual testing was carried out on the user interface to ensure that all buttons and

input boxes functioned as intended. I also carried out testing as I was linking the frontend to

the backend ensuring that the backend functionality was fully functional within the frontend.

41

Section 6 Evaluation

In the design document I set out three key objectives which the success of this project would

be evaluated against:

• Accuracy: The aim of this project is to bring together existing research which has

been conducted in the ANGELIC project into a unified tool. To achieve this, the

software I have developed must be able to replicate the results which have been

achieved in the relevant legal domains [5][7].

• Explainability: A key aim in the ANGELIC project is to further the cause of

explainable AI and create an alternative to ‘black-box’ decision-making within the

legal field providing transparent outcomes in which each judgement can be explained

and clearly shown to the user.

• Usability: The user-interface should not require an intimate familiarity with the

various algorithms and methodologies involved to be able to obtain an accurate result

in a pre-existing or new model of a legal domain.

I will proceed to explain how I have met each of the evaluation criteria as well as aspects

which could be improved upon.

6.1 Accuracy

In regard to accuracy, this primarily concerns whether the tool achieves the same outcomes in

the same cases as the Prolog implementations of the prior research on Wild Animals, Trade

Secrets and Automobile Exception. In each of the cases I have replicated the results of prior

research which originally achieved predictive accuracies of 96.8% in Trade Secrets, 100% in

Wild Animals and 90% in Automobile Exception [5]3. Whilst in NIHL the cases were

3 As stated in §6.1 this is with the exception of the case Coolidge v. New Hampshire.

42

synthetic so there are no real predictive accuracies to compare them against, however the

results, such as finding for or against the claimant, I predicted in the expected outcomes were

achieved.

There were some discrepancies not covered by the unit tests which I uncovered during

manual testing that are worth noting. Whilst the factors generated are identical to the

expected outcomes, I noticed that the corresponding statements produced sometimes differ in

one notable regard. Due to the differences in control structures between the Prolog and

Python implementations, described in §4.1, my implementation prints additional statements

to the Prolog. This arises since my implementation evaluates each node every time the ADF

is evaluated whereas the Prolog, which has a more selective control structure, does not

always consider every node. Figure 15 shows the additional statements shown to the user in

the case California v. Carney (cvc) from Automobile Exception.

Despite the statements differing from the Prolog, they are not incorrect statements nor

contradictions in the context of the case, just additional and sometimes slightly irrelevant

information. For example, in cvc it says ‘default it is not a vessel…’ this is not incorrect since

the vehicle in this case is a mobile home, not a vessel. It can be argued that this extra detail

adding to an already long list of statements shown to the user may have the effect of

obfuscating more relevant information, but overall, I believe the extra detail provides more

transparency in the decision-making process which outweighs the potential for obfuscation.

Figure 15 - Additional statements from California v. Carney.

43

Due to following the same methodology in designing my implementation of the ADFs and

legal domains to the previous Prolog implementations, a limitation of this project is that it

does not further increase the accuracy in any of the domains tested from the original results

achieved in the Prolog.

6.2 Explainability

To achieve the goal of providing transparency in the decision-making process, it is important

that the user is able to understand the process followed in reaching an outcome as well as the

reasons for the decision. Figure 10 shows the outcome page after querying a case in Trade

Secrets. It clearly displays each reason, in the order they were evaluated, and an outcome. By

reading through these reasons, you can come to understand the “thought process” the tool

used in coming to a decision. For example, in Figure 10, one can logically follow that from

reason 6 ‘the information was available elsewhere’ and reason 9 ‘information was not a trade

secret’, the outcome that no trade secret was misappropriated makes intuitive sense.

However, a limitation in the understandability of this output is that I had hoped to be able to

convert it to continuous prose rather than presenting it as a set of statements, in the hope it

would be able to be read in a manner closer to a judge’s written decision. But the logical

thread underlying the decision is clearly visible within my implementation.

44

Whilst the outcome screen clearly shows the reasons behind the decision, I also wanted to

allow the user to understand the process in reaching the decision without needing to

remember each acceptance condition or understand the algorithms traversing the tree. Figure

16 shows the result of this. Using the Python library Pydot, the tool is able to generate visual

representations of ADF which highlight green the nodes which have been accepted, and red

the nodes which have been rejected. This enables the user to visually understand the decision-

making process at a glance and see why a decision has been made. See Appendix F for full

visualisations of each domain.

6.3 Usability

In assessing usability, it is important that the functionalities of the software are easy to

navigate and use. To achieve this, I have:

• Kept the user interface clean and consistent.

• Clearly labelled buttons and labels for user input.

Figure 16 – Wild Animals ADF as generated within the software for the case

Keeble v. Hickeringill.

45

• Implemented red question marks providing pop-up text to help with some rules

regarding user input which are not immediately obvious, e.g., a domain name should

have no spaces between the words. These tips help provide useful reminders to

ensure the software is used correctly. Unfortunately, due to time constraints the use

of hover over tips is abundant on some screens and absent from others.

• Written a user manual (see Appendix G), navigable at any time from the help button,

detailing each screen present within the software and guiding the user through the

best practices and rules in place to ensure a domain is queried or created successfully

within the tool.

6.4 Learning Points

In this section I will surmise some of the key learning points in the project.

6.4.1 User Interface

The user interface for this software was the first user interface I had ever created. There were

a few struggles in realising this objective, especially as it took me a little while to understand

how to properly use Tkinter to seamlessly change between pages in the UI. There was even a

moment of panic in trying to learn this library leading me to try another similar library called

PyQt, but this didn’t quite offer enough flexibility and customisation, so I persevered with

Tkinter. In the end I was pleased with the results obtained from Tkinter and feel a lot more

confident in creating user interfaces, though I would like to have had more time to really

understand Tkinter in order to implement more functionality, as some aspects I wanted to

include such as a ‘back button’, didn’t work very well with the backend so were abandoned.

46

6.4.2 Saving Data

One aspect I would do differently, despite it being functional, is the ability to save ADFs.

Originally, I wanted to implement this with an SQL database which would have facilitated a

more dynamic saving process since ADFs that were created within the software would be

automatically loaded and edited ADFs would update immediately. Due to my lack of

experience in accessing databases through Python this did not end up happening, and I stuck

with an easier to implement though more static implementation based upon excel files. Whilst

this implementation functions perfectly fine, I feel that if I had taken some more time to

really think about and design this feature, I could have created it in a far more efficient and

dynamic manner.

6.4.3 Unit Testing

Towards the end of completing the project I began to delve deeper into unit testing as I

wanted to test my code more robustly than the testing functions I had written would allow me

to, especially with regard to the save/import features. These tests have made the testing

procedure more rigorous and allowed me to easily spot and solve any problems which came

as a result of running them. In the future I would use a more test-driven development model

and create the code to fit the tests, which I believe would have saved me a lot of time and

debugging headaches.

47

Section 7 Professional Issues

In this section I will discuss how my project is related to the British Computer Society’s Code

of Conduct.

7.1 IT for everyone

Accessibility and the idea of IT being as inclusive as possible to both those inside and out of

the field is at the heart of many of my design decisions around usability. The software has

been designed so that it is usable by someone who is not a computer scientist, e.g. a legal

professional, so that the user is not required to be too familiar with the algorithms and

methodologies underlying the implementation in order to receive an outcome to the case

queried which is clear, concise and understandable.

7.2 Say what you know, learn what you don’t

During this project there have been many tasks I lacked the knowledge to complete, so a

sizeable part of this project was spent learning and understanding new techniques such as

drawing a UML diagram, or writing pseudocode for the first time, to designing a user

interface and learning how to use Python libraries to assist in the visualisation component.

The entire process has been one of growth and reflection in my skillset.

7.3 Respect the organisation

Whilst I did not directly work with an organisation on this project, I did work with data which

came from an industry collaborator who had previously partnered with the University of

Liverpool. This data allowed me to model the ADF for NIHL. In order to respect this

organisation and the confidentiality of their data I am not reproducing the acceptance

conditions nor showing a visualization of the domain within this paper.

48

7.4 Keep IT real

To keep IT real and pass it on I believe this project helps to further and promote the

integration of computational techniques in the legal field. The development and deployment

of AI systems applied to law is increasingly happening in the real-world [16] and this paper

helps to showcase how some of this research can be deployed in a responsible and effective

manner.

49

Section 8 Conclusion

To conclude, this project was very successful in achieving its aims and objectives. In this

work I have aimed to explain how the software I have developed has achieved the aims and

objectives set out at the beginning to create a tool which can be used to create, edit and query

ADFs. I have shown how the tool was designed with flexibility in mind from the outset to

enable ADFs to be dynamically created by the user for the legal domains covered within this

paper or new legal domains yet to be modelled. I have then demonstrated how this was

implemented within the frontend and backend as well as with the extra features I added such

as saving and loading ADFs to facilitate editing them in light of new legal precedents, or

graphical visualisations of the case decision-making process. In testing the software, I was

able to achieve the expected outcomes in each legal domain, replicating the previous results

achieved in earlier Prolog implementations. Finally, I have evaluated the tool against the

evaluation criteria of usability, accuracy and explainability, concluding that the tool has for

largely met these criteria providing a transparent, user-friendly, and accurate implementation

of the ANGELIC project’s research.

8.1 Further Work

In regard to further work, I would love to have been able to model a new legal domain in this

software, but this was beyond the scope of the project. This was due to the need for legal

analysis in determining the factors and acceptance conditions for the ADFs, as well as

determining the base-level factors for any real-world cases to be tested on this.

As computational efficiency was not a core objective in this project nor one of the evaluation

criteria, this was not an area I was able to pay as much attention to as I would like. Whilst the

algorithms run fairly quickly with the ADFs modelled in this paper, it is certainly feasible to

imagine with larger ADFs for more complex legal domains that this could slow down the

50

running of the program. Future work focusing on more computationally efficient streamlined

versions of these algorithms or using multi-threading and other related techniques would

improve the outcomes achieved here.

51

REFERENCES

[1] Aletras, N., et al. (2016). Predicting judicial decisions of the European Court of Human

Rights: a Natural Language Processing perspective. PeerJ Computer Science., 2, Article e93.

[2] Collenette, J., et al. (2020). An explainable approach to deducing outcomes in European

court of human rights cases using ADFs.

[3] European Union. (2010). Charter of Fundamental Rights of the European Union. In

Official Journal of the European Union C83, Vol. 53: 380, European Union.

[4] Hacker, P., et al. (2020). Explainable AI under contract and tort law: legal incentives and

technical challenges. Artificial Intelligence and Law 28, 415–439.

[5] Al-Abdulkarim, L., et al (2016) A methodology for designing systems to reason with

legal cases using ADFs. Artificial Intelligence and Law. 24(1):1–49.

[6] Dung, P.M. (1995) On the acceptability of arguments and its fundamental role in

nonmonotonic reasoning, logic programming, and n-person games. Artificial Intelligence,

Vol. 77: 321–357.

[7] Al-Abdulkarim, L., et al (2017): Noise induced hearing loss: An application of the

ANGELIC methodology. In Wyner, A. Legal Knowledge and Information Systems - JURIX

2017: The Thirtieth Annual Conference, Luxembourg, pp. 79-88. Frontiers in Artificial

Intelligence and Applications, Vol. 302. IOS Press, Amsterdam,

[8] Dawson, C. (2015). Projects in Computing and Information Systems 3rd edition: A

Student's Guide (3rd. ed.). Prentice Hall Press, USA.

[9] Medvedeva, M., et al. (2020) Using machine learning to predict decisions of the European

Court of Human Rights. Artificial Intelligence & Law 28, 237–266.

[10] Katz, D.M., et al. (2017). A general approach for predicting the behavior of the Supreme

Court of the United States. PLOS ONE 12(4): e0174698.

[11] Aleven, V. (1997). Teaching case-based argumentation through a model and examples.

PhD thesis, University of Pittsburgh.

[12] Ashley, K. (1990). Modelling Legal Argument: Reasoning with Cases and

Hypotheticals. Bradford Books/MIT Press, Cambridge, MA.

[13] Agrawal, S., et al. (2017), Affirm or reverse? using machine learning to help judges write

opinions, Technical report, Working Paper.

[14] Aleven, V., (2003). Using background knowledge in case-based legal reasoning: A

computational model and an intelligent learning environment. Artificial Intelligence, Vol 150:

183-237.

[15] Nugues, P.M., (2014). Language Processing with Perl and Prolog, Springer-Verlag

Berlin Heidelberg.

[16] Kauffman, M.E., Soares, M.N., (2020). AI in legal services: new trends in AI-enabled

legal services. SOCA 14, 223–226.

52

APPENDIX A – Design Documentation

The following is the original design documentation submitted as part of the Specification and

Proposed Design assessment.

Design

The system design aims to realise several key objectives and implement the required features

necessary to meet these. These features are as follows:

• Query an existing ADF: The end-user will be able to query an existing ADF by

answering a number of questions corresponding to each of the base-level factors in

the ADF. For example, if a base-level factor was Trespassing, the question may be

“Did the defendant trespass upon the plaintiff’s land?”, which may be answered ‘Yes’

or ‘No’ depending on the facts of the case the user is wishing to predict the outcome

of. After the base-level factors have been generated, the tool should generate an

outcome as well as showing the different factors which went into making the decision,

for example, “The plaintiff had a good motive”.

• Editing an existing ADF: The ability for the user to edit and update existing ADFs in

light of new legal precedents. The motivation for this comes from the work conducted

in modelling the ‘US Automobile Exception to The Fourth Amendment’ domain [5].

In this domain there was one case which was not predicted correctly, California vs

Acevedo, because the judge overruled the previous precedent in this case. Since the

ADF is a model of legal precedent it is crucial to be able to amend them when

changes to the precedent occur.

• Creating an ADF: This tool will seek to allow the user to create an ADF, for a legal

domain of their choice. Defining the factors, relationships, acceptance conditions,

acceptance/rejection statements and questions instantiating the base-level factors. This

will allow the tool to be flexible in not only modelling the domains which have been

modelled such as Wild Animals or Trade Secrets but also facilitate the construction of

ADFs for new domains.

• User Interface: This implementation will provide a clear graphical user-interface

which will allow the end-user to easily use any of the aforementioned features.

Methodology and Technology

To achieve these design objectives, I will be implementing this tool in Python 3. Whilst the

initial implementations were achieved in Prolog [5], due to the declarative nature of the

acceptance conditions, I will be using Python because I believe it offers the flexibility and

robustness necessary in developing the entire tool from start to finish, and it is the language I

am the most familiar with. For the frontend I will be using the Tkinter since it is well

documented and offers a sufficient degree of customisation to be able to achieve the project

outcomes.

I will follow the Object-Oriented Design paradigm in designing the system. The two primary

classes will be the Node class - representing the individual factors as nodes, i.e., Trespassing,

53

with their associated acceptance conditions etc and the Tree class - modelling the ADF in

terms of the individual nodes’ relationships with one another.

The software development process I will be using will be an Agile methodology. This

method aims to develop functional systems quickly to the user, incrementally iterating and

expanding the features available [8]. This is beneficial for this project as it will allow me to

seek feedback from my supervisor regularly and easily implement any proposed changes for

the next iteration, ensuring that the project does not stray from the end-user’s desired

outcome. Additionally, an Agile approach will help to ensure that the core systems are

completely functional before any additional or desirable features are implemented.

Backend Design

To instantiate an ADF within the system, the first instances which will be created will be

those of the ‘Node’ class. The pseudocode for the construction of the class is shown below in

figure 1. This class will take in the factor name, children nodes, acceptance conditions and

the statements to be output depending on whether the factor is or is not present within the

case.

An example of the data which may be used to create a node instance [5]:

Factor Name: Trespass

Children: LegalOwner, AntiSocial

Acceptance Conditions: LegalOwner and AntiSocial

True Statement: “Defendant committed trespass”

False Statement: “Defendant committed no trespass”

A key method of the ‘Node’ class is the conversion of the acceptance conditions from infix to

postfix notation. This is due to the challenge of parsing logical conditions which may contain

parenthesis such as in “Capture if NOT (NotCaught) OR (Vermin and HotPursuit)” [1]. The

advantage of postfix notation is that it enables logical statements to be expressed without

parenthesis whilst maintaining operator precedence. In this form it is fast and efficient to

check whether the acceptance conditions are satisfied or not for a particular case’s facts.

Figure 2 demonstrates a variation of the standard algorithm for infix to postfix in pseudocode.

The postfix expression generated can then be evaluated with regard to the case facts. Figure 3

demonstrates an example of what the evaluation for an ‘Or’ clause might look like.

Fig 1: The Node Class

CLASS Node DO

 FUNCTION constructor(name, children, acceptanceConditions, statements) DO

 SET name: str

 SET children: list

 SET acceptanceConditions: str

 SET statements: list

 END

 FUNCTION acceptanceConditions(acceptanceConditions) DO

54

 IF acceptance condition stated:

 SET acceptanceConditions = CALL logicConverter(acceptanceConditions)

 END

Fig 2: Infix to Postfix Conversion

FUNCTION logicConverter(acceptanceConditions) DO

 SET stack: stack

 SET tokenList from acceptanceConditions: list

 SET postFixList: list

 FOR token in tokenList DO

 IF logical operator i.e and, not, or → pop higher/equal precedence

 operators to postFixList then push operator to stack

 IF '(' → push to stack

 IF ')' → pop operators until '(' popped and delete brackets

 IF operand i.e a factor - IllegalAct → add to postFixList

 RETURN postfixList as string

 END

 END

Fig 3: OR operator evaluator

 IF operator = or DO

 IF operand1 OR operand2 = TRUE

 RETURN TRUE

 ELSE-IF operand1 OR operand2 in cases

 RETURN TRUE

 ELSE

 RETURN FALSE

Fig 4: The ADF Class

CLASS ADF DO

 FUNCTION constructor(name) DO

 SET name from USERINPUT: str

 SET nodeList: dict

 END

 FUNCTION addNodes(name, children, acceptanceConditions) DO

 SET node = CALL Node(name, children, acceptanceConditions)

 Add node to nodeList

 END

 FUNCTION evaluateTree(cases) DO

 SET nodeChildren: dict

 SET nodesEvaluated: list

 FOR node in nodeList DO

 IF node.children != empty

 Add node to nodeChildren

 END

 FOR node in nodeChildren DO

 IF CALL childCheck(node) DO

55

 Add node to nodesEvaluated

 IF CALL evaluateNode(node) = TRUE DO

 add node name to cases

 pop node from nodeChildren

 ELSE DO

 pop node from nodeChildren

 END

 END

HELPER FUNCTION childCheck(node) DO

 FOR i in node.children DO

 IF i in nodeChildren

 IF i in nodesEvaluated

 PASS

 ELSE RETURN FALSE

 ELSE PASS

 RETURN TRUE

 END

 END

 HELPER FUNCTION evaluateNode(node) DO

 RETURN CALL evaluateLogic(node.acceptance, cases)

 END

An instance of the ‘Node’ class can be added to the ‘ADF’ class which will hold all the nodes

and the relationships between them. The nodes will be stored in a dictionary with the name of

the node as the key and the node object itself as the value. A key function within this class is

the algorithm to evaluate an ADF in respect to a given case. In the pseudocode in figure 4,

this is the evaluateTree method. This algorithm proceeds in the following manner:

1. For each node it identifies those which have children (non-leaf nodes) and adds them

to a dictionary. (This is because the leaf nodes do not have acceptance conditions to

evaluate, with their values coming from the questions asked in the user interface

concerning the facts of the case)

2. For a non-leaf node, it checks whether the children of that node have been evaluated

before or whether they are all leaf nodes. In the first iteration, for instance, this would

result in the algorithm finding a node where all its children are leaf nodes to evaluate

first. This creates the effect of ascending the ADF.

3. Next, it tests the acceptance conditions regarding the factors of the case. If the

acceptance condition is satisfied, then it adds that node’s factor to the factors of the

case and deletes that node from the list of non-leaf nodes to be evaluated.

4. It returns to step 2 until there are no nodes left which have not been evaluated, at

which point it presents the outcome.

Those classes and methods represent the core algorithms in the tool in order to model the

ADFs accurately. But, in the final version I would also expect to have: ways of saving an

ADF once created and enabling it to be imported or selected again; a backend procedure for

allowing editing of the ADF, which should be rather straightforward to implement given the

56

flexible class structure which contains it; and a reporting function which enables the user to

have a greater idea of the structure of the underlying ADF.

Frontend Design

The below diagram (figure 5) shows a wireframed mock-up of the graphical user interface for

the tool. The arrows show the different pathways the user can take depending on whether

they want to create, edit, or query an ADF for a specific legal domain. The following will

provide some greater detail on what each screen of the diagram represents.

Main Menu

• This screen acts as the homepage for the user. It allows a selection between the two

core functionalities within the app: creating a new ADF and querying an existing

ADF.

Domain Selection

• Uses a drop-down menu to allow the user to choose a previously created ADF to

query or edit.

Edit or Query Selection

• Allows the user to choose whether to edit or query the ADF.

Edit Node

• The user can change the name, acceptance conditions or children of a node. Will

likely also include the ability to easily delete a node as well.

Questions to User

• If the user is querying the ADF this screen allows the questions (which result in the

base-level factors being established) to be shown to the user one at a time. Each

question is compulsory, and they must be answered sequentially. The questions will

ordinarily be ‘Yes’/’No’ questions.

Outcome

• This screen will display the outcome of the case which the process has reached. It will

also display the factors which led to this decision. Desirably this output would be in

continuous prose rather than bullet points.

Domain Creation

• The user can specify the name of the domain for which they wish to create an ADF.

Furthermore, this instantiates the ADF.

Node Creation

• This enables the user to create the factor as a node with a name, children, and

acceptance conditions.

Set Questions

57

• On this screen the questions corresponding to the base-level factors can be manually

entered. Ideally, this screen would present the user with the base-level factor nodes

rather than relying on them remembering the names of them.

Fig 5: The User-Interface

58

APPENDIX B – UI

This appendix will show the different screens created within the UI and will briefly describe

the purpose of each screen.

Welcome screen – provides a brief overview of the tool and allows the user to read

the manual or begin using the application.

Main Menu – allows the user to create a new domain or select an existing domain.

59

Create Domain – the user can set the name of the new domain they are creating

Node Creation – the user can choose to create a true/false node or a multiple

choice node

60

True/False Node Creation – the user can set the name, acceptance condition and

statement to be printed when the node is accepted.

Default Statement – the user can set a statement to be printed when the node is not

accepted. This screen is the same regardless of which type of node you create.

61

Multi-Choice Node Creation - the user can set the name, acceptance condition and

statement to be printed when the node is accepted as well as the question to

instantiate the node.

Question Creation – the software generates the base level factors which have not

had questions set for them and prompts the user to set those questions.

62

Question Order – the user can set the order the questions will be asked when the ADF

is queried.

Edit Domain – the user can edit an individual node’s acceptance conditions, name or

statement; they can edit the question of a leaf node; the question order; delete nodes;

add new nodes to the domain and finally can save the domain as a ‘.xlsx’ file.

63

Save – the user can choose a filename to save the ADF as.

Existing Domain – the user can import a previously created ‘.xlsx’ file in or can select

one of the pre-existing domains.

64

Query Domain – the user can specify the case name or query a predefined case.

Query Menu – the user can query, edit or visualise an existing domain.

65

Questions – An example of a ‘yes’ or ‘no’ question presented to the user to instantiate the

base-level factors.

Outcome – this screen shows the reasons the outcome was reached in that particular case.

66

Report – this screen shows the report features included such as how many nodes are in the

domain, how many have been accepted within the case and allows the visualisation to be

generated.

67

APPENDIX C §5.1 Investigation

I noticed when comparing the results of the Prolog with my own implementation in Python

that the LegitimatelyObtainable node, referred to in Prolog as ‘F120’ triggered in the

following cases in mine: arco, ferranti, sandlin, yokana, cm1, mbl, mason, scientology but did

not trigger in a single case within the Prolog.

The first place to look was the acceptance condition for this node which is one of the simplest

in any ADF. Within the Prolog it is constructed as below:

getf120(C,Factors):-member(f105,Factors),

 write([the,information,was,legitimately,obtained]),nl,

 getf110(C,[f120|Factors]).

getf120(C,Factors):-write([the,information,was,not,legitimately,obtained]),nl,

 getf110(C,Factors).

The acceptance condition here is that if F105 is present then we should accept F120. The odd

thing was that F105 was present in each of the cases which triggered F120 in my

implementation, so the question became why was this not triggering in the Prolog?

To answer this, I used the trace functionality in Prolog for the case Yokana which gave the

following output (this output has been abridged to show only the relevant sections):

Call: (19) getf120(yokana, [f112, f7, f10, f16, f27]) ? creep

 Call: (20) lists:member(f105, [f112, f7, f10, f16, f27]) ? creep

 Fail: (20) lists:member(f105, [f112, f7, f10, f16, f27]) ? creep

 Redo: (19) getf120(yokana, [f112, f7, f10, f16, f27]) ? creep

 Call: (20) write([the, information, was, not, legitimately, obtained]) ?creep

[the,information,was,not,legitimately,obtained]

 Exit: (20) write([the, information, was, not, legitimately, obtained]) ?creep

Call: (23) getf105(yokana, [f108, f112, f7, f10, f16, f27]) ? creep

 Call: (24) lists:member(f108, [f108, f112, f7, f10, f16, f27]) ? creep

 Exit: (24) lists:member(f108, [f108, f112, f7, f10, f16, f27]) ? creep

 Call: (24) write([the, information, was, known, or, available]) ? creep

[the,information,was,known,or,available]

 Exit: (24) write([the, information, was, known, or, available]) ? creep

 Call: (24) nl ? creep

68

 Exit: (24) nl ? creep

 Call: (24) getf104(yokana, [f105, f108, f112, f7, f10, f16, f27]) ?

The trace shows that F105 is being evaluated after F120, this means that F120 can never be

triggered in the Prolog since it has no knowledge of whether F105 will or will not be

accepted. Consequently, I could feel comfortable in the knowledge that my implementation

was working correctly since this was a bug in the Prolog and not a fault in outcome of my

implementation.

69

APPENDIX D: Test Data

This section will show the test data, both the case input and the expected outcomes which

came from the Prolog. Each line in the input gives the case name and a list of the base-level

factors. Each line of the expected outcome gives the case name and a list of the factors,

including non-leaf factors, which should be in the case after evaluation. Another aspect of the

evaluation test data is that the first item in the list corresponds to the case outcome which

would be displayed to the user to quickly check the final outcome in testing.

Wild Animals Test Data

Input

keeble = ['NotCaught','LegalOwner','Malice','Nuisance','DSport','PLiving']

pierson = ['NotCaught','HotPursuit','Impolite','PSport','Vermin']

young = ['NotCaught','HotPursuit','Impolite','PLiving','DLiving']

ghen = ['NotCaught','Convention','NoBlame','PLiving','DLiving']

popov = ['NotCaught','HotPursuit','Assault','NoBlame','PGain','DGain']

Expected Outcome

keeble = ['find for the plaintiff, find against the

defendant','IllegalAct','Trespass','AntiSocial','RightToPursue','OwnsLand','PMotive','NotCaug

ht','LegalOwner','Malice','Nuisance','DSport','PLiving']

pierson = ['do not find for the plaintiff, find for the

defendant','AntiSocial','RightToPursue','PMotive','NotCaught','HotPursuit','Impolite','PSport','

Vermin']

young = ['do not find for the plaintiff, find for the

defendant','RightToPursue','DMotive','PMotive','NotCaught','HotPursuit','Impolite','PLiving','

DLiving']

ghen = ['find for the plaintiff, find against the

defendant','DMotive','PMotive','Ownership','NotCaught','Convention','NoBlame','PLiving','D

Living']

popov = ['do not find for the plaintiff, the defendant did not act illegally, do not find against

the

defendant','IllegalAct','RightToPursue','DMotive','PMotive','NotCaught','HotPursuit','Assault',

'NoBlame','PGain','DGain']

70

Trade Secrets Test Data

Input

arco = ['SecretsDisclosedOutsiders', 'InfoReverseEngineerable','InfoKnownToCompetitors']

boeing =

['AgreedNotToDisclose','SecurityMeasures','OutsiderDisclosuresRestricted','RestrictedMateri

alsUsed','KnewInfoConfidential','DisclosureInNegotations','SecretsDisclosedOutsiders']

bryce =

['AgreedNotToDisclose','SecurityMeasures','IdenticalProducts','KnewInfoConfidential','Discl

osureInNegotations']

collegeWatercolour = ['UniqueProduct','Deception','DisclosureInNegotations']

denTalEz =

['AgreedNotToDisclose','SecurityMeasures','KnewInfoConfidential','Deception','DisclosureIn

Negotations']

ecolgix =

['KnewInfoConfidential','DisclosureInNegotations','NoSecurityMeasures','WaiverOfConfiden

tiality']

emery = ['IdenticalProducts','KnewInfoConfidential','SecretsDisclosedOutsiders']

ferranti =

['BribeEmployee','InfoIndependentlyGenerated','NoSecurityMeasures','InfoKnownToCompet

itors','DisclosureInPublicForum']

robinson =

['IdenticalProducts','Deception','DisclosureInNegotations','SecretsDisclosedOutsiders','NoSec

urityMeasures']

sandlin =

['DisclosureInNegotations','SecretsDisclosedOutsiders','InfoReverseEngineerable','NoSecurit

yMeasures','DisclosureInPublicForum']

sheets = ['IdenticalProducts','NoSecurityMeasures','DisclosureInPublicForum']

spaceAero =

['CompetitiveAdvantage','UniqueProduct','IdenticalProducts','DisclosureInNegotations','NoSe

curityMeasures']

televation =

['SecurityMeasures','OutsiderDisclosuresRestricted','UniqueProduct','IdenticalProducts','Kne

wInfoConfidential','SecretsDisclosedOutsiders','InfoReverseEngineerable']

yokana =

['BroughtTools','SecretsDisclosedOutsiders','InfoReverseEngineerable','DisclosureInPublicFo

rum']

71

cm1 =

['AgreedNotToDisclose','SecurityMeasures','InfoKnownToCompetitors','InfoIndependentlyG

enerated','InfoReverseEngineerable','SecretsDisclosedOutsiders','DisclosureInPublicForum']

digitalDevelopment =

['SecurityMeasures','CompetitiveAdvantage','UniqueProduct','IdenticalProducts','KnewInfoC

onfidential','DisclosureInNegotations']

fmc =

['AgreedNotToDisclose','SecurityMeasures','BroughtTools','OutsiderDisclosuresRestricted','S

ecretsDisclosedOutsiders','VerticalKnowledge']

forrest =

['SecurityMeasures','UniqueProduct','KnewInfoConfidential','DisclosureInNegotations']

goldberg =

['KnewInfoConfidential','DisclosureInNegotations','SecretsDisclosedOutsiders','DisclosureIn

PublicForum']

kg =

['SecurityMeasures','RestrictedMaterialsUsed','UniqueProduct','IdenticalProducts','KnewInfo

Confidential','InfoReverseEngineerable','InfoReverseEngineered']

laser =

['SecurityMeasures','OutsiderDisclosuresRestricted','KnewInfoConfidential','DisclosureInNeg

otations','SecretsDisclosedOutsiders']

lewis = ['CompetitiveAdvantage','KnewInfoConfidential','DisclosureInNegotations']

mbl =

['AgreedNotToDisclose','SecurityMeasures','NoncompetitionAgreement','AgreementNotSpec

ific','SecretsDisclosedOutsiders','InfoKnownToCompetitors']

mason =

['SecurityMeasures','UniqueProduct','KnewInfoConfidential','DisclosureInNegotations','InfoR

everseEngineerable']

mineralDeposits =

['IdenticalProducts','RestrictedMaterialsUsed','DisclosureInNegotations','InfoReverseEnginee

rable','InfoReverseEngineered']

nationalInstruments = ['IdenticalProducts','KnewInfoConfidential','DisclosureInNegotations']

nationalRejectors =

['BroughtTools','UniqueProduct','IdenticalProducts','SecretsDisclosedOutsiders','InfoReverse

Engineerable','NoSecurityMeasures','DisclosureInPublicForum']

reinforced =

['AgreedNotToDisclose','SecurityMeasures','CompetitiveAdvantage','UniqueProduct','KnewI

nfoConfidential','DisclosureInNegotations']

scientology =

['AgreedNotToDisclose','SecurityMeasures','OutsiderDisclosuresRestricted','SecretsDisclosed

Outsiders','VerticalKnowledge','InfoKnownToCompetitors']

72

technicon =

['SecurityMeasures','OutsiderDisclosuresRestricted','RestrictedMaterialsUsed','KnewInfoCon

fidential','SecretsDisclosedOutsiders','InfoReverseEngineerable','InfoReverseEngineered']

trandes =

['AgreedNotToDisclose','SecurityMeasures','OutsiderDisclosuresRestricted','DisclosureInNeg

otations','SecretsDisclosedOutsiders']

valcoCincinnati =

['SecurityMeasures','OutsiderDisclosuresRestricted','UniqueProduct','KnewInfoConfidential','

DisclosureInNegotations','SecretsDisclosedOutsiders']

Expected Outcome

arco = ['no trade secret was misappropriated, find for

defendant','LegitimatelyObtainable','EffortstoMaintainSecrecy','InfoKnownOrAvailiable','Inf

oKnown','InfoAvailiableElsewhere','InfoUsed', 'SecretsDisclosedOutsiders',

'InfoReverseEngineerable','InfoKnownToCompetitors']

boeing = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','Improper

Means','QuestionableMeans','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality','

ConfidentialityAgreement','MaintainSecrecyDefendant','MaintainSecrecyOutsiders',

'AgreedNotToDisclose','SecurityMeasures','OutsiderDisclosuresRestricted','RestrictedMateria

lsUsed','KnewInfoConfidential','DisclosureInNegotations','SecretsDisclosedOutsiders']

bryce = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality','ConfidentialityAgreement','MaintainSecr

ecyDefendant',

'AgreedNotToDisclose','SecurityMeasures','IdenticalProducts','KnewInfoConfidential','Disclo

sureInNegotations']

collegeWatercolour = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','Improper

Means','QuestionableMeans','InfoUsed',

'UniqueProduct','Deception','DisclosureInNegotations']

denTalEz = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','Improper

Means','QuestionableMeans','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality','

ConfidentialityAgreement','MaintainSecrecyDefendant',

'AgreedNotToDisclose','SecurityMeasures','KnewInfoConfidential','Deception','DisclosureIn

Negotations']

ecolgix = ['no trade secret was misappropriated, find for

defendant','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality',

'KnewInfoConfidential','DisclosureInNegotations','NoSecurityMeasures','WaiverOfConfident

iality']

emery = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

73

ConfidentialRelationship','NoticeOfConfidentiality',

'IdenticalProducts','KnewInfoConfidential','SecretsDisclosedOutsiders']

ferranti = ['no trade secret was misappropriated, find for

defendant','LegitimatelyObtainable','InfoKnownOrAvailiable','InfoKnown',

'BribeEmployee','InfoIndependentlyGenerated','NoSecurityMeasures','InfoKnownToCompeti

tors','DisclosureInPublicForum']

robinson = ['no trade secret was misappropriated, find for

defendant','InfoValuable','ImproperMeans','QuestionableMeans','InfoUsed','IdenticalProducts'

,'Deception','DisclosureInNegotations','SecretsDisclosedOutsiders','NoSecurityMeasures']

sandlin = ['no trade secret was misappropriated, find for

defendant','LegitimatelyObtainable','InfoKnownOrAvailiable','InfoAvailiableElsewhere','Info

Used','DisclosureInNegotations','SecretsDisclosedOutsiders','InfoReverseEngineerable','NoSe

curityMeasures','DisclosureInPublicForum']

sheets = ['no trade secret was misappropriated, find for defendant','InfoValuable','InfoUsed',

'IdenticalProducts','NoSecurityMeasures','DisclosureInPublicForum']

spaceAero = ['no trade secret was misappropriated, find for

defendant','InfoValuable','InfoUsed',

'CompetitiveAdvantage','UniqueProduct','IdenticalProducts','DisclosureInNegotations','NoSec

urityMeasures']

televation = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality','MaintainSecrecyOutsiders',

'SecurityMeasures','OutsiderDisclosuresRestricted','UniqueProduct','IdenticalProducts','Knew

InfoConfidential','SecretsDisclosedOutsiders','InfoReverseEngineerable']

yokana = ['no trade secret was misappropriated, find for

defendant','LegitimatelyObtainable','EffortstoMaintainSecrecy','InfoKnownOrAvailiable','Inf

oAvailiableElsewhere','InfoUsed',

'BroughtTools','SecretsDisclosedOutsiders','InfoReverseEngineerable','DisclosureInPublicFor

um']

cm1 = ['no trade secret was misappropriated, find for

defendant','LegitimatelyObtainable','EffortstoMaintainSecrecy','InfoKnownOrAvailiable','Inf

oKnown','InfoAvailiableElsewhere','ConfidentialRelationship','NoticeOfConfidentiality','Con

fidentialityAgreement','MaintainSecrecyDefendant',

'AgreedNotToDisclose','SecurityMeasures','InfoKnownToCompetitors','InfoIndependentlyGe

nerated','InfoReverseEngineerable','SecretsDisclosedOutsiders','DisclosureInPublicForum']

digitalDevelopment = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality',

'SecurityMeasures','CompetitiveAdvantage','UniqueProduct','IdenticalProducts','KnewInfoCo

nfidential','DisclosureInNegotations']

fmc = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

74

ConfidentialRelationship','NoticeOfConfidentiality','ConfidentialityAgreement','MaintainSecr

ecyDefendant','MaintainSecrecyOutsiders','AgreedNotToDisclose','SecurityMeasures','Broug

htTools','OutsiderDisclosuresRestricted','SecretsDisclosedOutsiders','VerticalKnowledge']

forrest = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality',

'SecurityMeasures','UniqueProduct','KnewInfoConfidential','DisclosureInNegotations']

goldberg = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality',

'KnewInfoConfidential','DisclosureInNegotations','SecretsDisclosedOutsiders','DisclosureInP

ublicForum']

kg = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality',

'SecurityMeasures','RestrictedMaterialsUsed','UniqueProduct','IdenticalProducts','KnewInfoC

onfidential','InfoReverseEngineerable','InfoReverseEngineered']

laser = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality','MaintainSecrecyOutsiders',

'SecurityMeasures','OutsiderDisclosuresRestricted','KnewInfoConfidential','DisclosureInNeg

otations','SecretsDisclosedOutsiders']

lewis = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality',

'CompetitiveAdvantage','KnewInfoConfidential','DisclosureInNegotations']

mbl = ['no trade secret was misappropriated, find for

defendant','LegitimatelyObtainable','EffortstoMaintainSecrecy','InfoKnownOrAvailiable','Inf

oKnown','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality','ConfidentialityAgre

ement','MaintainSecrecyDefendant',

'AgreedNotToDisclose','SecurityMeasures','NoncompetitionAgreement','AgreementNotSpeci

fic','SecretsDisclosedOutsiders','InfoKnownToCompetitors']

mason = ['no trade secret was misappropriated, find for

defendant','LegitimatelyObtainable','EffortstoMaintainSecrecy','InfoValuable','InfoKnownOr

Availiable','InfoAvailiableElsewhere','InfoUsed','ConfidentialRelationship','NoticeOfConfide

ntiality',

'SecurityMeasures','UniqueProduct','KnewInfoConfidential','DisclosureInNegotations','InfoR

everseEngineerable']

mineralDeposits = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality',

'IdenticalProducts','RestrictedMaterialsUsed','DisclosureInNegotations','InfoReverseEngineer

able','InfoReverseEngineered']

75

nationalInstruments = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality',

'IdenticalProducts','KnewInfoConfidential','DisclosureInNegotations']

nationalRejectors = ['no trade secret was misappropriated, find for

defendant','InfoValuable','InfoUsed',

'BroughtTools','UniqueProduct','IdenticalProducts','SecretsDisclosedOutsiders','InfoReverseE

ngineerable','NoSecurityMeasures','DisclosureInPublicForum']

reinforced = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality','ConfidentialityAgreement','MaintainSecr

ecyDefendant',

'AgreedNotToDisclose','SecurityMeasures','CompetitiveAdvantage','UniqueProduct','KnewIn

foConfidential','DisclosureInNegotations']

scientology = ['no trade secret was misappropriated, find for

defendant','LegitimatelyObtainable','EffortstoMaintainSecrecy','InfoKnownOrAvailiable','Inf

oKnown','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality','ConfidentialityAgre

ement','MaintainSecrecyDefendant','MaintainSecrecyOutsiders',

'AgreedNotToDisclose','SecurityMeasures','OutsiderDisclosuresRestricted','SecretsDisclosed

Outsiders','VerticalKnowledge','InfoKnownToCompetitors']

technicon = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality','MaintainSecrecyOutsiders',

'SecurityMeasures','OutsiderDisclosuresRestricted','RestrictedMaterialsUsed','KnewInfoConfi

dential','SecretsDisclosedOutsiders','InfoReverseEngineerable','InfoReverseEngineered']

trandes = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality','ConfidentialityAgreement','MaintainSecr

ecyDefendant','MaintainSecrecyOutsiders',

'AgreedNotToDisclose','SecurityMeasures','OutsiderDisclosuresRestricted','DisclosureInNeg

otations','SecretsDisclosedOutsiders']

valcoCincinnati = ['a trade secret was misappropriated, find for

plaintiff','TradeSecretMisappropriation','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','

ConfidentialRelationship','NoticeOfConfidentiality','MaintainSecrecyOutsiders',

'SecurityMeasures','OutsiderDisclosuresRestricted','UniqueProduct','KnewInfoConfidential','

DisclosureInNegotations','SecretsDisclosedOutsiders']

Fourth Amendment

Coolidge v. New Hampshire (cvnh) excluded as described in §5.1.

Input

76

cvus =

['car','moving','public_informant','illegal_substance','all_parts','automobile_location','illegal_s

ubstance']

cvm = ['car','ft015w','moving','highway','inspection_regulation','robbery','all_parts']

cvd =

['car','public_view','boot','crashed','parked_on_highway','dwelling','inspection_regulation','mu

rder','all_parts','garage'] #pass

sdvo =

['car','paper_bag','glovebox','parked','parking_lot','multiple_parking','illegal_substance','all_pa

rts','automobile_location','illegal_substance'] #pass

usvc =

['car','foot_locker','police_station','boot','parked','parking_lot','public_informant','illegal_subst

ance','car_trunk','police_station_location','illegal_substance','double_locked'] #pass

avs =

['car','goods_container','suitcase','airport','boot','moving','agent_officer','illegal_substance','car

_trunk','illegal_substance','closed'] #pass

usvr =

['car','paper_bag','police_station','parked','parking_lot','public_informant','illegal_substance','a

ll_parts','car_trunk','automobile_location','police_station_location','illegal_substance','money',

'closed'] #pass

cvc =

['mobile_home','paper_bag','near_court','motorhome','police_station','parked','driver_in','parki

ng_lot','downtown','public_informant','the_public','illegal_substance','all_parts','police_station

_location','automobile_location','illegal_substance','closed','cab','suitable_accomodation_spac

e','bedroom','kitchen'] #pass

cva =

['car','paper_bag','police_station','boot','moving','highway','public_informant','illegal_substanc

e','car_trunk','automobile_location','illegal_substance','closed'] #pass

Expected Outcome

cvus = ['warantless search did not violate the fourth

amendment','car','moving','public_informant','illegal_substance','all_parts','automobile_locatio

n','illegal_substance','Exigency','RiskofLosingEvidence','SubjectToInspectionRegulation','Lic

ence','ProbableCauseToSearchVehicle','LegalSearchScope','SearchPlace','WholeVehicle','Urg

entReasonToSearch','PublicSafety','AuthorizedOriginOfProbableCause','Information','Exigen

cyWhenApproached','UrgentStatus','Mobile','Automobile']

cvm = ['warantless search did not violate the fourth

amendment','car','ft015w','moving','highway','inspection_regulation','robbery','all_parts','Risk

ofLosingEvidence','SubjectToInspectionRegulation','Licence','ProbableCauseToSearchVehicl

e','LegalSearchScope','WholeVehicle','UrgentReasonToSearch','Crime','PublicSafety','Authori

77

zedOriginOfProbableCause','Procedure','ExigencyWhenApproached','PublicLocation','Urgent

Status','Mobile','Automobile','Exigency']

cvd = ['warantless search did not violate the fourth

amendment','car','public_view','boot','crashed','parked_on_highway','dwelling','inspection_reg

ulation','murder','all_parts','garage','RiskofLosingEvidence','VisibilityOfItem','CanBeSeen','Su

bjectToInspectionRegulation','Licence','ProbableCauseToSearchVehicle','LegalSearchScope','

WholeVehicle','UrgentReasonToSearch','Crime','PublicSafety','AuthorizedOriginOfProbable

Cause','Procedure','ExigencyWhenApproached','PublicParking','CapableToMove','Mobile','A

utomobile','Exigency']

sdvo = ['warantless search did not violate the fourth

amendment','car','paper_bag','glovebox','parked','parking_lot','multiple_parking','illegal_subst

ance','all_parts','automobile_location','illegal_substance','RiskofLosingEvidence','CannotBeSe

en','SubjectToInspectionRegulation','Licence','ProbableCauseToSearchVehicle','LegalSearch

Scope','SearchPlace','WholeVehicle','UrgentReasonToSearch','PublicSafety','AuthorizedOrigi

nOfProbableCause','Procedure','ExigencyWhenApproached','PublicParking','CapableToMove

','Mobile','MovableContainer','Automobile','Exigency']

usvc = ['warantless search violates the fourth

amendment','car','foot_locker','police_station','boot','parked','parking_lot','public_informant','il

legal_substance','car_trunk','police_station_location','illegal_substance','double_locked','Risk

ofLosingEvidence','ProtectionType','CannotBeSeen','RestrictedArea','Licence','OnlyVehicleC

ontainer','UrgentReasonToSearch','PublicSafety','AuthorizedOriginOfProbableCause','Inform

ation','ExigencyWhenApproached','PublicParking','CapableToMove','Mobile','LargeContaine

r','Automobile','Privacy']

avs = ['warantless search violates the fourth

amendment','car','goods_container','suitcase','airport','boot','moving','agent_officer','illegal_su

bstance','car_trunk','illegal_substance','closed','RiskofLosingEvidence','CannotBeSeen','Restri

ctedArea','Licence','OnlyVehicleContainer','UrgentReasonToSearch','PublicSafety','Authorize

dOriginOfProbableCause','Information','ExigencyWhenApproached','UrgentStatus','Mobile','

MovableContainer','LargeContainer','Automobile','Privacy']

usvr = ['warantless search did not violate the fourth

amendment','car','paper_bag','police_station','parked','parking_lot','public_informant','illegal_s

ubstance','all_parts','car_trunk','automobile_location','police_station_location','illegal_substan

ce','money','closed','RiskofLosingEvidence','RestrictedArea','Licence','ProbableCauseToSearc

hVehicle','LegalSearchScope','SearchPlace','WholeVehicle','UrgentReasonToSearch','PublicS

afety','AuthorizedOriginOfProbableCause','Information','ExigencyWhenApproached','PublicP

arking','CapableToMove','Mobile','MovableContainer','Automobile','Exigency']

cvc = ['warantless search did not violate the fourth

amendment','mobile_home','paper_bag','near_court','motorhome','police_station','parked','driv

er_in','parking_lot','downtown','public_informant','the_public','illegal_substance','all_parts','p

olice_station_location','automobile_location','illegal_substance','closed','cab','suitable_accom

odation_space','bedroom','kitchen','RiskofLosingEvidence','Accomodation','AccomodationSp

aces','RestrictedArea','Licence','ProbableCauseToSearchVehicle','LegalSearchScope','SearchP

lace','WholeVehicle','UrgentReasonToSearch','PublicSafety','AuthorizedOriginOfProbableCa

78

use','Information','ExigencyWhenApproached','PublicParking','PublicLocation','CapableToM

ove','Mobile','MovableContainer','Automobile','Exigency']

cva = ['warantless search violates the fourth

amendment','car','paper_bag','police_station','boot','moving','highway','public_informant','illeg

al_substance','car_trunk','automobile_location','illegal_substance','closed','RiskofLosingEvide

nce','CannotBeSeen','RestrictedArea','Licence','SearchPlace','OnlyVehicleContainer','UrgentR

easonToSearch','PublicSafety','AuthorizedOriginOfProbableCause','Information','ExigencyW

henApproached','PublicLocation','UrgentStatus','Mobile','MovableContainer','Automobile','Pr

ivacy']

79

APPENDIX E - Visualisations

Wild Animals Domain

80

Trade Secrets Domain

Domain split into two to be read from left to right.

81

Automobile Exception Domain

Domain split into three to be read from left to right

82

83

APPENDIX F – User Manual

USER MANUAL

CONTENTS

--

1.0 - General Instructions

2.0 - Create a New Domain

2.1 - Create a T/F Node

 2.1.1 - Default Statement

2.2 - Create a Multiple Choice Node

2.3 - Question Creation

 2.3.1 - Question Order

3.0 - Existing Domain

3.1 - Edit Domain Menu

3.2 - Query Domain

 3.2.1 - Question Answering

3.3 - Outcome

 3.3.1 - Report

3.4 - Edit Domain

 3.4.1 - Edit non-leaf node

 3.4.2 - Save

3.5 - Visualise Domain

1.0 - GENERAL INSTRUCTIONS

--

- Pressing 'START' on the welcome screen will bring you to the main menu and

allow you to use the application.

- You can go back to the menu at any time from 'File', but if you are in the middle

of querying, creating or editing a domain, etc. your progress in this will be lost.

- You can also acces the user manual at any time by pressing 'Help'.

2.0 - CREATE A NEW DOMAIN

--

- After initialising the creation of a new legal domain you must first specify

a name for the domain. This name cannot contain spaces in order to function

properly.

e.g. if your domain name is Wild Animals, write it as WildAnimals

2.1 - Create a T/F Node

--

- Create this kind of node if you are creating a non-leaf factor and you want

any questions to instantiate the base-level factors to be answered 'Yes' or 'No'.

- You do not need to create nodes for base-level factors, only non-leaf factors.

The base-level factor nodes will be generated for you. The exception is if you

84

wish the base-level factor to be determined by multiple choice then refer to 2.2.

- First set a name for the node, the name must not contain any spaces. For the

visualisation feature to work properly do not use names which are too long, under

25 characters is best.

e.g. if your node name is Visibility of Item, write it as VisibilityOfItem

- You can then set acceptance conditions and statements.

- Each acceptance condition must have an accompanying statement to be printed

when it is accepted.

- Each acceptance condition must consist of other nodes, which may have been created

previously or not, with the logical operators and, or, not between them.

e.g. Assault and not Trespass

- You may also use brackets in order to make the logical expressions clearer so

long as there are spaces between the brackets and the nodes/logical conditions.

e.g. (OwnsLand and Resident) or Convention or Capture

- It is also possible to create a reject condition using the keyword 'reject'.

This keyword means that if the acceptance condition is satisfied the node will

not be added to the factors in the case.

e.g. reject Licence and RestrictedArea

- There must always be a node named Decide in the domain which which

may be created at any time. This node should give the final outcome of the case.

- Press add condition when you have entered your acceptance condition and statement.

This will cause what you have entered to disappear and you can then enter another

acceptance condition and statement if needed.

2.1.1 - Default Statement

--

- This statement will be displayed in the outcome if the acceptance condition

is not met.

- Press add statement when you have entered this.

- Press END if you have added all the nodes otherwise add a T/F node or a multi

node - 2.3 will detail the next screen.

2.2 - Create a Multiple Choice Node

--

- Create this kind of node if you are creating a base-level factor which you

want to instantiate with a multiple choice question.

e.g. If the vehicle is an automobile, is it a: car, mobile home

- To refer to setting the name, acceptance and statement boxes refer to 2.1.

- The only exception to the above is the setting of the acceptance conditions.

The tokens within the acceptance condition, which have not been created as other

nodes, will form the answers of the multiple choice question. The choice made by the

user will then determine whether the node is accepted or not.

e.g. weapon and illegal_substance

85

- When adding a token into an acceptance condition which you wish to be part of

the multiple choice answer list, the convention is to use underscores instead of

leaving no spaces as the program will render underscores as spaces when displaying

the answers to the user which allows for easier comprehension.

- Set the question you wish to have answered by multiple choice.

2.3 - Question Creation

--

- After creating the domain, the program will determine which base-level factors

require questions to be set. Set a question for each and then press add question.

- You can only add one question per base-level factors, repeated entry of questions

will result in the previous question being overwritten.

2.3.1 - Question Order

--

- This screen enables the user to create an order for the questions to be presented

to the user by highlighting a question and then pressing up or down to move it.

- Press DONE when this has been completed. This will bring you to the edit screen

where you can create aditional nodes, delete erroneous nodes, change the question

order and save the domain you have created. If you do not go through the save function

all progress will be lost upon returning to the menu or exiting the program.

- For details on saving the domain refer to 3.4.2

3.0 - EXISTING DOMAIN

--

- This screen allows you to select one of the included domains: Wild Animals,

Trade Secrets, Exception to the Fourth Amendment and Noise-Induced Hearing Loss

or to import a domain you previously created and saved through this application.

This file would be saved as a '.xlsx' file.

3.1 - Edit Domain Menu

--

- The first option allows you to query a case in your chosen legal domain.

- The second option allows you to edit a case in your chosen legal domain.

- The third option allows you to visualise your chosen legal domain.

3.2 - Query Domain

--

- On this screen you can query a predefined case from the drop down menu or

query a new case by inputting a case name. Ensure the case name has no spaces

between words.

3.2.1 - Question Answering

--

- For 'Yes' or 'No' questions, answering them is mandatory. Select your answer

and then press NEXT for the next question.

- For multiple choice questions answering them is optional. If none of the answers

fit your case then leave them blank and press NEXT.

86

3.3 - Outcome

--

- The outcome displays the result and reasoning which led to a decision being

made.

- NEXT CASE - will allow you to query another case in the same domain.

- REPORT - will give you a more detailed report of the outcome of the case. As

detailed in 3.3.1

3.3.1 - Report

--

- This screen states how many nodes are in the domain, how many have been

accepted and a factor list with all the nodes which have been accepted.

- If you input a filename and press visualise this will create and open a png

file which shows a tree graph of the domain with the accepted nodes highlighted

green and the rejected nodes highlighted red. This shows the pathway the decision

making tool used to reach its outcome.

3.4 - Edit Domain

--

- On this screen you can select a non-leaf node which you can delete by pressing

DELETE or you can edit by pressing SEARCH.

- If you wish to edit a leaf node, you can only edit the question associated with it.

If you wish to delete a leaf node you must do this by changing any parent node's

acceptance conditions which make reference to this node to no longer reference the node.

- For information on CHANGE QUESTION ORDER, refer to 2.3.1

- For information on CREATE NODE, refer to 2.1 or 2.2

3.4.1 - Edit non-leaf node

--

- The same rules from 2.1 or 2.2 apply for changing the name, statements, questions

and acceptance conditions.

- For a multi-node they will appear in both non-leaf and leaf lists. In the leaf list

you will be able to edit the question and in the non-leaf list you will be able to

edit the acceptance conditions and statements.

- Pressing ADD ACCEPTANCE will add a new acceptance condition and a statement

to the screen.

- Press SUBMIT when you have made the required changes and then press DONE. Failure

to press SUBMIT will result in the changes not being saved.

3.4.2 - Save

--

- The filename must have no spaces. Once entered pressing SAVE will create

a '.xlsx' file with the data contained. When 'Done' shows this process has been

completed. To query or edit the newly created domain, refer to 3.0.

3.5 - Visualise Domain

87

--

- This will open a tree graph visualisation of the domain and save this image

as a png with the domain name as the filename.

88

APPENDIX G – Project Log

Project Milestones Achieved

• Completed the reading and background research required 24.06.2021

• Completed the full design 07.07.2021

• Finished implementing the backend systems 08.08.2021

• Completed the frontend systems 22.08.2021

• Completed the testing/evaluation 29.08.2021

• Finished the Final Report 03.09.2021

89

APPENDIX H – Code Listings

This appendix will reproduce the full code listings and will detail how to run the code. The

code for the NIHL domain will not be listed here, due to data privacy concerns. More detail

on this can be found in §2.

H.1 INSTALLATION AND RUN GUIDE

This code was tested on an Anaconda distribution of Python 3.8.8.

The additional libraries required to be installed are:

pip install pythonds

pip install openpyxl

conda install graphviz

pip install pydot

Tkinter should be part of the Anaconda distribution but otherwise use:

pip install tk

It is crucial that graphviz and pydot are installed in the order listed as there can sometimes be

issues with the graphviz library otherwise, and pydot requires this library to generate the

visualisations.

To run the application please ensure all ‘.py’ files and the user_manual.txt are in the same

directory and only run the UI.py file.

H.2 MainClasses.py

This file establishes the classes for the ADF(), Node() and MultiNode() classes. The file also

contains the function for importing an ADF in importADF().

from openpyxl.reader.excel import load_workbook

from pythonds import Stack

import openpyxl as xl

import pydot

class ADF:

 """

 A class used to represent the ADF graph

 Attributes

90

 name : str

 the name of the ADF

 nodes : dict

 the nodes which constitute the ADF

 reject : bool, default False

 is set to true when the reject keyword is used which lets the software know to reject the node ra-

ther than accep it when the condition is true

 nonLeaf : dict

 the nodes which are non-leaf that have children

 questionOrder : list

 an ordered list which determines which order the questions are asked in

 question : str, optional

 if the node is a base-level factor this stores the question

 statements : list

 the statements to be shown if the node is accepted or rejected

 nodeDone : list

 nodes which have been evaluated

 case : list

 the list of factors forming the case

 Methods

 addNodes(name, acceptance = None, statement=None, question=None)

 allows nodes to be added to the ADF from the Node() class

 addMulti(name, acceptance, statement, question)

 allows nodes to be added to the ADF from the MultiChoice() class

 nonLeafGen()

 determines what is a non-leaf factor

 evaluateTree(case)

 evaluates the ADF for a specified case

 evaluateNode(node)

 evaluates the acceptance conditions of the node

 postfixEvaluation(acceptance)

 evaluates the individual acceptance conditions which are in postfix notation

 checkCondition(operator, op1, op2 = None):

 checks the logical conditions for the acceptance condition, returning a boolean

 checkNonLeaf(node)

 checks if a node has children which need to be evaluated before it is evaluated

 questionAssignment()

 checks if any node requires a question to be assigned

 visualiseNetwork(case=None)

 allows visualisation of the ADF

 saveNew(name)

 allows the ADF to be saved as a .xlsx file

 saveHelper(wb,name)

 helper class for saveNew which provides core functionality

 """

91

 def __init__(self, name):

 """

 Parameters

 name : str

 the name of the ADF

 """

 self.name = name

 #dictionary of nodes --> 'name': 'node object

 self.nodes = {}

 self.reject = False

 #dictionary of nodes which have children

 self.nonLeaf = {}

 self.questionOrder = []

 def addNodes(self, name, acceptance = None, statement=None, question=None):

 """

 adds nodes to ADF

 Parameters

 name : str

 the name of the node

 acceptance : list

 a list of the acceptance conditions each of which should be a string

 statement : list

 a list of the statements which will be shown if a condition is accepted or rejected

 question : str

 the question to determine whether a node is absent or present

 """

 node = Node(name, acceptance, statement, question)

 self.nodes[name] = node

 self.question = question

 #creates children nodes

 if node.children != None:

 for childName in node.children:

 if childName not in self.nodes:

 node = Node(childName)

92

 self.nodes[childName] = node

 def addMulti(self,name, acceptance, statement, question):

 """

 adds MultiChoice() nodes to the ADF

 Parameters

 name : str

 the name of the node

 acceptance : list

 a list of the acceptance conditions each of which should be a string

 statement : list

 a list of the statements which will be shown if a condition is accepted or rejected

 question : str

 the question to determine whether a node is absent or present

 """

 node = MultiChoice(name, acceptance, statement, question)

 self.nodes[name] = node

 def nonLeafGen(self):

 """

 determines which of the nodes is non-leaf

 """

 #sets it back to an empty dictionary

 self.nonLeaf = {}

 #checks each node and determines if it is a non-leaf node (one with children)

 for name,node in zip(self.nodes,self.nodes.values()):

 #adds node to dict of nodes with children

 if node.children != None and node.children != []:

 self.nonLeaf[name] = node

 else:

 pass

 def evaluateTree(self, case):

 """

 evaluates the ADF for a given case

 Parameters

 case : list

 the list of factors forming the case

93

 """

 #keep track of print statements

 self.statements = []

 #list of non-leaf nodes which have been evaluated

 self.nodeDone = []

 self.case = case

 #generates the non-leaf nodes

 self.nonLeafGen()

 #while there are nonLeaf nodes which have not been evaluated, evaluate a node in this list in ascend-

ing order

 while self.nonLeaf != {}:

 for name,node in zip(self.nonLeaf,self.nonLeaf.values()):

 #checks if the node's children are non-leaf nodes

 if name == 'Decide' and len(self.nonLeaf) != 1:

 pass

 elif self.checkNonLeaf(node):

 #adds to list of evaluated nodes

 self.nodeDone.append(name)

 #checks candidate node's acceptance conditions

 if self.evaluateNode(node):

 #enables rejection clauses - handy for automobile

 if self.reject != True:

 #adds factor to case if present

 self.case.append(name)

 #deletes node from nonLeaf nodes

 self.nonLeaf.pop(name)

 self.statements.append(node.statement[self.counter])

 self.reject = False

 break

 #if node's acceptance conditions are false

 else:

 #deletes node from nonLeaf nodes but doesn't add to case

 self.nonLeaf.pop(name)

 #the last statement is always the rejection statemenr

 self.statements.append(node.statement[-1])

 self.reject = False

 break

 return self.statements

 def evaluateNode(self, node):

 """

 evaluates a node in respect to its acceptance conditions

 x will be always be a boolean value

 Parameters

94

 node : class

 the node class to be evaluated

 """

 #for visualisation purposes - this tracks the attacking nodes

 self.vis = []

 #counter to index the statements to be shown to the user

 self.counter = -1

 #checks each acceptance condition seperately

 for i in node.acceptance:

 self.reject = False

 self.counter+=1

 x = self.postfixEvaluation(i)

 if x == True:

 return x

 return x

 def postfixEvaluation(self,acceptance):

 """

 evaluates the given acceptance condition

 Parameters

 acceptance : str

 a string with the names of nodes seperated by logical operators

 """

 #initialises stack of operands

 operandStack = Stack()

 #list of tokens from acceptance conditions

 tokenList = acceptance.split()

 #checks each token's acceptance conditions

 for token in tokenList:

 #checks if something is a rejection condition

 if token == 'reject':

 self.reject = True

 try:

 if x in self.case:

 return True

 else:

 return False

 except:

 pass

95

 elif token == 'not':

 operand1 = operandStack.pop()

 result = self.checkCondition(token,operand1)

 operandStack.push(result)

 self.vis.append(operand1)

 elif token == 'and' or token == 'or':

 operand2 = operandStack.pop()

 operand1 = operandStack.pop()

 result = self.checkCondition(token,operand1,operand2)

 operandStack.push(result)

 #for an acceptance condition with no operator

 elif len(tokenList) == 1 or (len(tokenList) ==2 and 'reject' in tokenList):

 if 'reject' in tokenList and 'reject' != token:

 x = token

 else:

 if token in self.case:

 return True

 else:

 return False

 else:

 #adds the operand to the stack

 operandStack.push(token)

 return operandStack.pop()

 def checkCondition(self, operator, op1, op2 = None):

 """

 checks the logical condition and returns a boolean

 Parameters

 operator : str

 the logical operator such as or, and, not

 op1 : str

 the first operand

 op2 : str, optional

 the second operand

 """

 if operator == "or":

 if op1 in self.case or op2 in self.case or op1 == True or op2 == True:

 return True

 else:

 return False

 elif operator == "and":

96

 if op1 == True or op1 in self.case:

 if op2 in self.case or op2 == True:

 return True

 else:

 return False

 elif op2 == True or op2 in self.case:

 if op1 in self.case or op1 == True:

 return True

 else:

 return False

 else:

 return False

 elif operator == "not":

 if op1 == True:

 return False

 if op1 == False:

 return True

 elif op1 not in self.case:

 return True

 else:

 return False

 def checkNonLeaf(self, node):

 """

 checks if a given node has children which need to be evaluated

 before it can be evaluated

 Parameters

 node : class

 the node class to be evaluated

 """

 for j in node.children:

 if j in self.nonLeaf:

 if j in self.nodeDone:

 pass

 else:

 return False

 else:

 pass

 return True

97

 def questionAssignment(self):

 """

 used by the user interface to determine whether a node needs a

 question assigning to it

 """

 for i in self.nodes.values():

 if i.children == None and i.question == None:

 return i.name

 return None

 def visualiseNetwork(self,case=None):

 """

 allows the ADF to be visualised as a graph

 can be for the domain with or without a case

 if there is a case it will highlight the nodes green which have been

 accepted and red the ones which have been rejected

 Parameters

 case : list, optional

 the list of factors constituting the case

 """

 #initialises the graph

 G = pydot.Dot('{}'.format(self.name), graph_type='graph')

 if case != None:

 #checks each node

 for i in self.nodes.values():

 #checks if node is already in the graph

 if i not in G.get_node_list():

 #checks if the node was accepted in the case

 if i.name in case:

 a = pydot.Node(i.name,label=i.name,color='green')

 else:

 a = pydot.Node(i.name,label=i.name,color='red')

 G.add_node(a)

98

 #creates edges between a node and its children

 if i.children != None and i.children != []:

 self.evaluateNode(i)

 for j in i.children:

 if j not in G.get_node_list():

 if j in case:

 a = pydot.Node(j,label=j,color='green')

 else:

 a = pydot.Node(j,label=j,color='red')

 G.add_node(a)

 #self.vis is a list which tracks whether a node is an attacking or defending node

 if j in self.vis:

 if j in case:

 my_edge = pydot.Edge(i.name, j, color='green',label='-')

 else:

 my_edge = pydot.Edge(i.name, j, color='red',label='-')

 else:

 if j in case:

 my_edge = pydot.Edge(i.name, j, color='green',label='+')

 else:

 my_edge = pydot.Edge(i.name, j, color='red',label='+')

 G.add_edge(my_edge)

 else:

 #creates self.vis if not already created

 self.evaluateTree([])

 #checks each node

 for i in self.nodes.values():

 #checks if node is already in the graph

 if i not in G.get_node_list():

 a = pydot.Node(i.name,label=i.name,color='black')

 G.add_node(a)

 #creates edges between a node and its children

 if i.children != None and i.children != []:

99

 self.evaluateNode(i)

 for j in i.children:

 if j not in G.get_node_list():

 a = pydot.Node(j,label=j,color='black')

 G.add_node(a)

 #self.vis is a list which tracks whether a node is an attacking or defending node

 if j in self.vis:

 my_edge = pydot.Edge(i.name, j, color='black',label='-')

 else:

 my_edge = pydot.Edge(i.name, j, color='black',label='+')

 G.add_edge(my_edge)

 return G

 def saveNew(self,filename):

 """

 enables an ADF to be saved as a .xlsx file

 Parameters

 adf : class

 the instance of the ADF() class

 name : str

 the filename

 """

 #create the excel workbook

 wb = xl.Workbook()

 #saves the workbook

 wb.save('{}.xlsx'.format(filename))

 #saves the ADF in the workbook

 self.saveHelper(wb, filename)

 def saveHelper(self,wb,filename):

 """

 helper class for saveNew which provides the ability to save the

 ADF in an excel file

100

 Parameters

 adf : class

 the instance of the ADF() class

 name : str

 the filename

 wb : xl.Workbook()

 the excel workbook to save the adf in

 """

 #checks to see if there is a file with the same name to overwrite or not

 try:

 wb['{}'.format(filename)]

 ws = wb['{}'.format(filename)]

 except:

 wb.create_sheet('{}'.format(filename))

 ws = wb['{}'.format(filename)]

 for i in self.nodes.values():

 #duplicate flag

 dupeFlag = True

 #checks whether the node has already been saved or not to prevent duplicates

 for row in ws.iter_rows(values_only = True):

 if row[0] == i.name:

 dupeFlag = False

 else:

 pass

 if dupeFlag == True:

 #sets node name

 nodeName = [i.name]

 try:

 #adds acceptance conditions and corresponding statements

 for x,y in zip(i.acceptanceOriginal,i.statement):

 nodeName.append(x)

 nodeName.append(y)

 #adds the rejection statement

 nodeName.append(i.statement[-1])

 except:

 #no acceptance condition i.e. base level factor

 pass

101

 ws.append(nodeName)

 #adds the question in the row below the other node info

 if i.question != None:

 ws.append([i.question])

 else:

 ws.append(['None'])

 #inserts a row at the end with the question order

 if self.questionOrder != []:

 self.questionOrder.insert(0,"QUESTION!")

 ws.append(self.questionOrder)

 wb.save('{}.xlsx'.format(filename))

 #removes from the question order as only temporary for data file

 self.questionOrder.remove("QUESTION!")

class Node:

 """

 A class used to represent an individual node, whose acceptance conditions

 are instantiated by 'yes' or 'no' questions

 Attributes

 name : str

 the name of the node

 question : str, optional

 the question which will instantiate the blf

 answers :

 set to None type to indicate to other methods the Node is not from MultiChoice()

 acceptanceOriginal : str

 the original acceptance condition before being converted to postfix notation

 statement : list

 the statements which will be output depending on whether the node is accepted or rejected

 acceptance : list

 the acceptance condition in postfix form

 children : list

 a list of the node's children nodes

 Methods

 attributes(acceptance)

 sets the acceptance conditions and determines the children nodes

 logicConverter(expression)

102

 converts the acceptance conditions into postfix notation

 """

 def __init__(self, name, acceptance=None, statement=None, question=None):

 """

 Parameters

 name : str

 the name of the node

 statement : list, optional

 the statements which will be output depending on whether the node is accepted or rejected

 acceptance : list, optional

 the acceptance condition in postfix form

 question : str, optional

 the question which will instantiate the blf

 """

 #name of the node

 self.name = name

 #question for base leve factor

 self.question = question

 self.answers = None

 self.acceptanceOriginal = acceptance

 #sets postfix acceptance conditions and children nodes

 try:

 self.attributes(acceptance)

 self.statement = statement

 except:

 self.acceptance = None

 self.children = None

 self.statement = None

 def attributes(self, acceptance):

 """

 sets the acceptance condition and children for the node

 Parameters

 acceptance : list

 the acceptance condition in postfix form

 """

 #sets acceptance condition to postfix if acceptance condition specified

 self.acceptance = []

 self.children = []

103

 for i in acceptance:

 self.acceptance.append(self.logicConverter(i))

 for i in self.acceptance:

 splitAcceptance = i.split()

 #sets the children nodes

 for token in splitAcceptance:

 if token not in ['and','or','not','reject'] and token not in self.children:

 self.children.append(token)

 def logicConverter(self, expression):

 """

 converts a logical expression from infix to postfix notation

 Parameters

 expression : list

 the acceptance condition to be converted into postfix form

 """

 #precedent dictionary of logical operators and reject keyword

 precedent = {'(':1,'or':2,'and':3,'not':4,'reject':5}

 #creates the stack

 operatorStack = Stack()

 #splits the tokens in the logical expression

 tokenList = expression.split()

 #stores the postfix expression

 postfixList = []

 #checks each token in the expression and pushes or pops on the stack accordingly

 for token in tokenList:

 if token == '(':

 operatorStack.push(token)

 elif token == ')':

 topToken = operatorStack.pop()

 while topToken != '(':

 postfixList.append(topToken)

 topToken = operatorStack.pop()

104

 elif token == 'and' or token == 'or' or token == 'not' or token == 'reject':

 while (not operatorStack.isEmpty()) and (precedent[operatorStack.peek()] >= precedent[token]):

 postfixList.append(operatorStack.pop())

 operatorStack.push(token)

 else:

 postfixList.append(token)

 #while operator stack not empty pop the operators to the postfix list

 while not operatorStack.isEmpty():

 postfixList.append(operatorStack.pop())

 #returns the post fix expression as a string

 return " ".join(postfixList)

class MultiChoice(Node):

 """

 for the creation of multiple choice base level factors, especially to

 facilitate the exception to the 4th amendment and NIHL domains

 Methods inherited from Node()

 Attributes

 name : str

 the name of the node

 question : str, optional

 the question which will instantiate the blf

 answers : list

 the multiple choice answers to be selected from

 acceptanceOriginal : str

 the original acceptance condition before being converted to postfix notation

 statement : list

 the statements which will be output depending on whether the node is accepted or rejected

 acceptance : list

 the acceptance condition in postfix form

 children : list

 a list of the node's children nodes

 Methods

 attributes(acceptance)

 sets the acceptance conditions and determines the children nodes

 logicConverter(expression)

 converts the acceptance conditions into postfix notation

 """

105

 def __init__(self, name, acceptance, statement, question=None):

 """

 Parameters

 name : str

 the name of the node

 statement : list, optional

 the statements which will be output depending on whether the node is accepted or rejected

 acceptance : list, optional

 the acceptance condition in postfix form

 question : str, optional

 the question which will instantiate the blf

 """

 #name of the node

 self.name = name

 #quetion for base level factor

 self.question = question

 self.acceptanceOriginal = acceptance

 #sets postfix acceptance conditions and children nodes

 try:

 self.attributes(acceptance)

 self.statement = statement

 except:

 self.acceptance = None

 self.children = None

 self.statement = None

 self.answers = self.children

def importADF(file,name):

 """

 enables a .xlsx file containing the ADF to be loaded into the tool

 Parameters

 file : file

 the file address on the computer

 name : str

 the filename

 """

 try:

 #loads workbook

106

 wb = load_workbook(file)

 #creates ADF

 ws = wb[name]

 adf = ADF(name)

 #identifies question order row and converts to questionOrder attribute

 if ws[ws.max_row][0].value == 'QUESTION!':

 max_range = ws.max_row - 1

 adf.questionOrder = [x.value for x in ws[ws.max_row] if x.value is not None]

 adf.questionOrder.remove("QUESTION!")

 else:

 max_range = ws.max_row

 for row in range(1, max_range,2):

 #each node has two rows with its data

 firstrow = ws[row]

 secondrow = ws[row+1]

 row = [x.value for x in firstrow if x.value is not None]

 row1 = [x.value for x in secondrow if x.value is not None]

 nameNode = row[0]

 acceptance = row[1:-1:2]

 slice = (row[0::2])

 statement = slice[1:]

 if statement != []:

 statement.append(row[-1])

 question = row1[0]

 #checks whether a multiChoice() or Node() is more appropriate

 if row1[0] == 'None':

 adf.addNodes(nameNode,acceptance,statement)

 else:

 try:

 #if row[1] is present this indicates there is an acceptance condition so it is a multi-

ple choice node since there is a question

 row[1]

 adf.addMulti(nameNode,acceptance,statement,question)

 except:

 adf.addNodes(nameNode,acceptance,statement,question)

107

 return adf

 except IOError:

 print('\nFilename does not exist\n')

H.3 UI.py
This file initialises the user interface and is the only file the user should run to begin using the

tool.

from tkinter import filedialog as fd

from tkinter import tix

from tkinter.constants import RIDGE

from tkinter.tix import *

import tkinter as tk

from tkinter import ttk

import openpyxl as xl

from MainClasses import *

import WildAnimals

import TradeSecrets

import FourthAmendment

import os

#excluded due to data privacy concerns

#import NIHL

#General Functionality and Menus

class Information():

 """

 info that is common between all classes which process the creation of an ADF

 """

 def __init__(self):

 self.name = None

 self.acceptance = []

 self.statement = []

 self.question = None

 self.adf = None

 self.multiFlag = False

 self.case = []

 self.node = None

 self.editFlag = False

 self.caseName = None

 self.caseList = {}

108

class UI(tix.Tk):

 def __init__(self,*args,**kwargs):

 tix.Tk.__init__(self,*args,**kwargs)

 tix.Tk.title(self,'ADF Tool')

 tix.Tk.geometry(self,"750x500")

 menubar = tk.Menu(self)

 filemenu = tk.Menu(menubar,tearoff=0)

 self.config(menu=menubar)

 filemenu.add_command(label="Menu",command=lambda:self.menu())

 filemenu.add_command(label="Exit", command=lambda:self.quit())

 menubar.add_cascade(label="File", menu=filemenu)

 menubar.add_command(label="Help", command=lambda:self.help())

 self.container = tk.Frame(self)

 self.container.pack(side="top",fill="both",expand=True)

 self.container.grid_rowconfigure(0,weight=1)

 self.container.grid_columnconfigure(0,weight=1)

 self.frames = {}

 frame = Welcome

 self.info = Information()

 self.frameCreation(frame,self.info)

 self.show_frame(frame)

 #styles

 s = ttk.Style()

 s.configure('my.TButton', font=('Helvetica', 15))

 def show_frame(self, page):

 frame = self.frames[page]

 frame.tkraise()

 def frameCreation(self, F, info):

 frame = F(self.container,self,info)

 self.frames[F] = frame

 frame.grid(row=0, column=0, sticky='nsew')

 def menu(self):

 self.frameCreation(MainMenu,self.info)

 self.show_frame(MainMenu)

109

 def help(self):

 os.startfile('User_Manual.txt')

 def quit(self):

 exit()

class Background(tk.Frame):

 def __init__(self,parent):

 tk.Frame.__init__(self,parent,bg='#A7D0FF')

 self.acc = []

class Welcome(Background):

 def __init__(self, parent, controller, info):

 Background.__init__(self,parent)

 self.info = info

 self.controller = controller

 var = tk.StringVar()

 var.set("Welcome to the Legal Decision-Making Tool")

 label = tk.Label(self, textvariable=var,font="Verdana 20 underline",bg='#A7D0FF')

 label.pack(pady=10,padx=10)

 T = tk.Text(self, height = 11, width = 45, bg='#ddeded',font="Verdana 18")

 message = """This is a tool to help assist in legal decision-making.\n\nThis tool will predict the out-

come of a legal case, in a\nspecified legal domain, after asking the user a number\nof ques-

tions. You can also create new ADFs for legal\ndomains in this tool and edit exist-

ing ones in light\nof new precedents or do-

main knowledge.\n\nPress START to begin the tool or press MANUAL to\ncheck the user manual be-

fore you begin."""

 T.place(relx=0.05,rely=0.13)

 T.insert(tk.END, message)

 button = ttk.Button(self, text = 'START',style='my.TButton',command=lambda: self.start())

 button.place(relheight= 0.1, relwidth = 0.15, relx=0.6, rely=0.85)

 button2 = ttk.Button(self, text = 'MANUAL',style='my.TButton',command=lambda: self.manual())

 button2.place(relheight= 0.1, relwidth = 0.15, relx=0.2, rely=0.85)

 def start(self):

 self.controller.frameCreation(MainMenu, self.info)

 self.controller.show_frame(MainMenu)

110

 def manual(self):

 os.startfile('User_Manual.txt')

class MainMenu(Background):

 def __init__(self, parent, controller, info):

 Background.__init__(self,parent)

 self.controller = controller

 self.info = info

 self.info.case = []

 var = tk.StringVar()

 var.set("Main Menu")

 label = tk.Label(self, textvariable=var,font="Verdana 20 underline",bg='#A7D0FF')

 label.pack(pady=10,padx=10)

 button = ttk.Button(self, text = 'Existing domain',style='my.TButton',command=lambda: self.existing-

Domain())

 button.place(relheight= 0.25 , relwidth = 0.5, relx=0.25, rely=0.6)

 button2 = ttk.Button(self, text = 'Create a new domain',style='my.TButton',com-

mand=lambda: self.CreateDomain())

 button2.place(relheight= 0.25 , relwidth = 0.5, relx = 0.25, rely=0.2)

 def CreateDomain(self):

 self.controller.frameCreation(CreateDomain, self.info)

 self.controller.show_frame(CreateDomain)

 def existingDomain(self):

 self.controller.frameCreation(ExistingDomain, self.info)

 self.controller.show_frame(ExistingDomain)

#Existing Domain Screens

class ExistingDomain(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.controller = controller

 self.info = info

 self.adf = None

 var = tk.StringVar()

 var.set("Existing Domain")

 var2 = tk.StringVar()

 var2.set("Select Domain:")

111

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20 underline")

 label.pack()

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 12")

 label2.place(relx = 0.02,rely = 0.2)

 var3 = tk.StringVar()

 var3.set("Import Domain:")

 label3 = tk.Label(self, textvariable=var3,bg='#A7D0FF',font="Verdana 12")

 label3.place(relx = 0.02,rely = 0.45)

 button = ttk.Button(self, text = 'OK',style= 'my.TButton',command= lambda: self.OK())

 button.place(relheight= 0.1 , relwidth = 0.1, relx = 0.45, rely=0.8)

 help = tk.StringVar()

 help.set('?')

 helpLabel = tk.Label(self, textvariable=help,bg='#A7D0FF',fg='#FF001F', relief=RIDGE,font="Ver-

dana 12 bold")

 helpLabel.place(relx = 0.2,rely = 0.45)

 box = Balloon(self)

 box.bind_widget(helpLabel,balloonmsg="Please select a .xlsx file which has previously been cre-

ated through this app")

 button1 = ttk.Button(self, text = 'BROWSE',style= 'my.TButton',command= lambda: self.browse())

 button1.place(relheight= 0.1 , relwidth = 0.2, relx = 0.4, rely=0.55)

 n = tk.StringVar()

 self.combo = ttk.Combobox(self, width = 50, textvariable = n, state='readonly')

 # Adding combobox drop down list

 self.combo['values'] = ('Wild Animals','Trade Secrets','Automobile Exception to the 4th Amend-

ment')#'Noise-Induced Hearing Loss')

 self.combo.place(relx = 0.3, rely=0.3)

 def OK(self):

 if self.adf != None:

 self.info.adf = self.adf

 self.info.caseList = {}

 self.controller.frameCreation(DomainMenu, self.info)

 self.controller.show_frame(DomainMenu)

 elif self.combo.get() == 'Wild Animals':

 self.info.adf = WildAnimals.adf()

112

 self.info.caseList = WildAnimals.cases()

 self.controller.frameCreation(DomainMenu, self.info)

 self.controller.show_frame(DomainMenu)

 elif self.combo.get() == 'Trade Secrets':

 self.info.adf = TradeSecrets.adf()

 self.info.caseList = TradeSecrets.cases()

 self.controller.frameCreation(DomainMenu, self.info)

 self.controller.show_frame(DomainMenu)

 elif self.combo.get() == 'Automobile Exception to the 4th Amendment':

 self.info.adf = FourthAmendment.adf()

 self.info.caseList = FourthAmendment.cases()

 self.controller.frameCreation(DomainMenu, self.info)

 self.controller.show_frame(DomainMenu)

 # elif self.combo.get() == 'Noise-Induced Hearing Loss':

 # self.info.adf = NIHL.adf()

 # self.info.caseList = NIHL.cases()

 # self.controller.frameCreation(DomainMenu, self.info)

 # self.controller.show_frame(DomainMenu)

 else:

 pass

 def browse(self):

 try:

 file = fd.askopenfilename(title='BROWSE',filetypes=[("Excel files", "*.xlsx")])

 name = os.path.basename(file)

 name = name.split('.')[0]

 self.adf = importADF(file,name)

 file.close()

 except:

 pass

class DomainMenu(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.controller = controller

 self.info = info

 button = ttk.Button(self, text = 'Edit domain',style='my.TButton', command=lambda:self.editDo-

main())

 button.place(relheight= 0.2 , relwidth = 0.5, relx=0.25, rely=0.4)

113

 button2 = ttk.Button(self, text = 'Query domain',style='my.TButton',command=lambda: self.queryDo-

main())

 button2.place(relheight= 0.2 , relwidth = 0.5, relx = 0.25, rely=0.15)

 button3 = ttk.Button(self, text = 'Visualise domain',style='my.TButton',command=lambda: self.visual-

ise())

 button3.place(relheight= 0.2, relwidth = 0.5, relx = 0.25, rely=0.65)

 def queryDomain(self):

 self.controller.frameCreation(CaseName, self.info)

 self.controller.show_frame(CaseName)

 def editDomain(self):

 self.controller.frameCreation(EditDomain, self.info)

 self.controller.show_frame(EditDomain)

 def visualise(self):

 self.graph = self.info.adf.visualiseNetwork()

 self.graph.write_png('{}.png'.format(self.info.adf.name))

 os.startfile('{}.png'.format(self.info.adf.name))

class CaseName(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.controller = controller

 self.info = info

 var = tk.StringVar()

 var.set("Query Domain")

 var2 = tk.StringVar()

 var2.set("Specify Case Name:")

 var3 = tk.StringVar()

 var3.set("Query a predefined case:")

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20 underline")

 label.pack()

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 12 underline")

 label2.place(relx = 0.02,rely = 0.2)

 label3 = tk.Label(self, textvariable=var3,bg='#A7D0FF',font="Verdana 12 underline")

 label3.place(relx = 0.02,rely = 0.5)

 n = tk.StringVar()

 self.combo = ttk.Combobox(self, width = 50, textvariable = n, state='readonly')

 if self.info.case != {}:

 self.combo['values'] = list(self.info.caseList.keys())

 self.combo.place(relx = 0.3 , rely = 0.62)

114

 self.entry = tk.Entry(self,font='Verdana 12')

 self.entry.place(relx = 0.32,rely = 0.3,relheight=0.05,relwidth=0.35)

 button = ttk.Button(self, text = 'OK',style= 'my.TButton',command= lambda: self.OK())

 button.place(relheight= 0.1 , relwidth = 0.1, relx = 0.45, rely=0.8)

 def OK(self):

 if self.entry.get() != '':

 self.info.caseName = self.entry.get()

 self.entry.delete(0,10000000)

 self.controller.frameCreation(QueryDomain, self.info)

 self.controller.show_frame(QueryDomain)

 elif self.combo.get() != '':

 self.info.caseName = self.combo.get()

 self.info.case = self.info.caseList[self.combo.get()]

 self.controller.frameCreation(Outcome, self.info)

 self.controller.show_frame(Outcome)

class QueryDomain(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.controller = controller

 self.info = info

 self.info.case = []

 self.number = 1

 self.stringDict = {}

 self.checkList = []

 self.nodes = self.info.adf.nodes.copy()

 self.questionOrder = self.info.adf.questionOrder.copy()

 self.orderFlag = False

 var = tk.StringVar()

 var.set("Domain Name:")

 var2 = tk.StringVar()

 var2.set(self.info.adf.name)

115

 self.var3 = tk.StringVar()

 self.var3.set("Question {}:".format(self.number))

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20")

 label.pack(side = 'left',anchor='nw')

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 20")

 label2.pack(side = 'left',anchor='nw')

 label3 = tk.Label(self, textvariable=self.var3,bg='#A7D0FF',font="Verdana 20")

 label3.place(relx = 0.05, rely=0.1)

 self.var4 = tk.StringVar()

 self.questionGen()

 label4 = tk.Label(self, textvariable=self.var4,bg='#A7D0FF',font="Verdana 20",wraplength=700)

 label4.place(relx = 0.05,rely=0.2)

 next = ttk.Button(self, text = 'NEXT',style= 'my.TButton',command= lambda: self.next())

 next.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.85)

 if self.multiFlag == False:

 self.trueFalse()

 else:

 self.multi()

 def next(self):

 if self.multiFlag == False:

 if self.i.get() == 'Yes':

 self.info.case.append(self.name)

 else:

 pass

 else:

 for key, value in self.stringDict.items():

 if value.get() == '1':

 key = key.replace(' ','_')

 self.info.case.append(key)

 self.forget()

 self.questionGen()

 if self.status == False:

 self.controller.frameCreation(Outcome, self.info)

 self.controller.show_frame(Outcome)

116

 else:

 pass

 if self.multiFlag:

 self.multi()

 else:

 self.trueFalse()

 self.number += 1

 self.var3.set("Question {}:".format(self.number))

 def questionGen(self):

 self.status = False

 self.multiFlag = False

 self.answers = []

 self.counter = 0

 if self.questionOrder != []:

 self.orderFlag = True

 for i in self.questionOrder:

 node = self.nodes[i]

 x = self.questionHelper(node)

 if x == 'Done':

 break

 self.questionOrder.remove(i)

 self.name = i

 return

 elif self.orderFlag == False:

 for i in self.nodes.values():

 x = self.questionHelper(i)

 if x == 'Done':

 break

 self.nodes.pop(i.name)

 self.name = i.name

 return

 return

 def questionHelper(self,i):

 #multipe choice question

 if i.answers != None:

 #prunes answers which are themselves non-leaf factors in the case of a multiple choice question

 for j in i.answers:

117

 try:

 self.info.adf.nodes[j]

 try:

 #solves an issue in the fourth amendment domain with not_authorised sub-blf

 if self.info.adf.nodes[j].question == '<>':

 self.answers.append(j)

 except:

 pass

 except:

 self.answers.append(j)

 question = i.question

 self.var4.set(question)

 self.multiFlag = True

 self.status = True

 return 'Done'

 #true/false question

 else:

 # '<>' is to fix a problem in the 4th amendment domain in which not_authorised was be-

ing prompted to set a question for it

 if i.question != None and i.question != '<>':

 self.question = i.question

 self.var4.set(self.question)

 self.status = True

 return 'Done'

 def trueFalse(self):

 self.i = tk.StringVar()

 self.i.set("Yes")

 self.r1= tk.Radiobutton(self, text="Yes", value='Yes', variable =self.i)

 self.r1.place(relx = 0.45,rely=0.5)

 self.r2= tk.Radiobutton(self, text="No", value='No', variable=self.i)

 self.r2.place(relx = 0.45,rely=0.55)

 def multi(self):

 x = 0.4

 y = 0.4

 counter = 0

 for i in self.answers:

 if len(self.answers)>5:

 x=0.2

118

 if len(self.checkList)>4:

 x=0.6

 y=0.4 + (0.05*counter)

 counter+=1

 i = i.replace('_',' ')

 y += 0.05

 self.stringDict[i] = tk.StringVar()

 c = tk.Checkbutton(self, text = i, variable=self.stringDict[i],tristatevalue=0)

 c.place(relx = x, rely = y)

 self.checkList.append(c)

 def forget(self):

 #multi check boxes

 try:

 # remove previous StringVars

 self.stringDict.clear()

 # remove previous Checkboxes

 for cb in self.checkList:

 cb.destroy()

 self.checkList.clear()

 except:

 pass

 try:

 self.r1.destroy()

 self.r2.destroy()

 except:

 pass

class Outcome(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.controller = controller

 self.info = info

 output = self.info.adf.evaluateTree(self.info.case)

 var = tk.StringVar()

 var.set("Domain Name:")

119

 var2 = tk.StringVar()

 var2.set(self.info.adf.name)

 self.var3 = tk.StringVar()

 self.var3.set("Outcome in {}:".format(self.info.caseName))

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20")

 label.pack(side = 'left',anchor='nw')

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 20")

 label2.pack(side = 'left',anchor='nw')

 label3 = tk.Label(self, textvariable=self.var3,bg='#A7D0FF',font="Verdana 20")

 label3.place(relx = 0, rely=0.1)

 anotherCase = ttk.Button(self, text = 'NEXT CASE',style= 'my.TButton',command= lambda: self.an-

otherCase())

 anotherCase.place(relheight= 0.1 , relwidth = 0.2, relx = 0.2, rely=0.85)

 menu = ttk.Button(self, text = 'MENU',style= 'my.TButton',command= lambda: self.menu())

 menu.place(relheight= 0.1 , relwidth = 0.2, relx = 0.4, rely=0.85)

 report = ttk.Button(self, text = 'REPORT',style= 'my.TButton',command= lambda: self.report())

 report.place(relheight= 0.1 , relwidth = 0.2, relx = 0.6, rely=0.85)

 outcome = tk.Text(self)

 outcome.place(relheight=0.6,relwidth=0.8, relx = 0.1, rely=0.2)

 scrollbar = tk.Scrollbar(self)

 scrollbar.place(relheight=0.6,relwidth=0.02,relx=0.9,rely=0.2)

 scrollbar.config(command=outcome.yview)

 outcome.config(yscrollcommand=scrollbar.set)

 counter = 1

 for i in range(0,len(output)-1):

 x = output[i]

 outcome.insert(tk.END,"Reason {}: ".format(counter))

 outcome.insert(tk.END,x+'\n')

 counter += 1

 outcome.insert(tk.END,"Outcome: ")

 outcome.insert(tk.END,output[-1])

 def anotherCase(self):

 self.controller.frameCreation(CaseName, self.info)

 self.controller.show_frame(CaseName)

120

 def menu(self):

 self.controller.show_frame(MainMenu)

 def report(self):

 self.controller.frameCreation(Report, self.info)

 self.controller.show_frame(Report)

class EditDomain(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.controller = controller

 self.info = info

 var = tk.StringVar()

 var.set("Domain Name:")

 var2 = tk.StringVar()

 var2.set(self.info.adf.name)

 self.var3 = tk.StringVar()

 self.var3.set("Edit Node")

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20")

 label.pack(side = 'left',anchor='nw')

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 20")

 label2.pack(side = 'left',anchor='nw')

 label3 = tk.Label(self, textvariable=self.var3,bg='#A7D0FF',font="Verdana 20 underline")

 label3.place(relx = 0.05, rely=0.1)

 var4 = tk.StringVar()

 var4.set('Edit or delete a non-leaf node')

 name = tk.Label(self, textvariable=var4,bg='#A7D0FF',font="Verdana 20 ")

 name.place(relx = 0.05, rely=0.2)

 var5 = tk.StringVar()

 var5.set('Edit the question of a leaf node')

 question = tk.Label(self, textvariable=var5,bg='#A7D0FF',font="Verdana 20 ")

 question.place(relx = 0.05, rely=0.4)

 n = tk.StringVar()

 self.combo = ttk.Combobox(self, width = 50, textvariable = n, state='readonly')

121

 m = tk.StringVar()

 self.combo2 = ttk.Combobox(self, width = 50, textvariable = m, state='readonly')

 nodeList = []

 nodeList2 = []

 self.info.adf.nonLeafGen()

 # Adding combobox drop down list

 for key in self.info.adf.nonLeaf:

 nodeList.append(key)

 for name in self.info.adf.nodes:

 node = self.info.adf.nodes[name]

 if node.question != None:

 nodeList2.append(node.name)

 self.combo['values'] = nodeList

 self.combo.place(relx = 0.3, rely=0.32)

 self.combo2['values'] = nodeList2

 self.combo2.place(relx = 0.3, rely=0.52)

 create = ttk.Button(self, text = 'CREATE NODE',style= 'my.TButton',command= lambda: self.create-

Node())

 create.place(relheight= 0.1 , relwidth = 0.4, relx = 0.1, rely=0.65)

 search = ttk.Button(self, text = 'SEARCH',style= 'my.TButton',command= lambda: self.searchNode())

 search.place(relheight= 0.1 , relwidth = 0.4, relx = 0.3, rely=0.85)

 save = ttk.Button(self, text = 'SAVE',style= 'my.TButton',command= lambda: self.saveNode())

 save.place(relheight= 0.1 , relwidth = 0.4, relx = 0.5, rely=0.75)

 question = ttk.Button(self, text = 'CHANGE QUESTION ORDER',style= 'my.TButton',com-

mand= lambda: self.questionOrder())

 question.place(relheight= 0.1 , relwidth = 0.4, relx = 0.5, rely=0.65)

 delete = ttk.Button(self, text = 'DELETE',style= 'my.TButton',command= lambda: self.delete())

 delete.place(relheight= 0.1 , relwidth = 0.4, relx = 0.1, rely=0.75)

 def delete(self):

 if self.combo.get() != '':

 self.info.adf.nodes.pop(self.combo.get())

122

 self.combo.set('')

 self.combo['values'] = []

 nodeList = []

 self.info.adf.nonLeafGen()

 # Adding combobox drop down list

 for key in self.info.adf.nonLeaf:

 nodeList.append(key)

 self.combo['values'] = nodeList

 def searchNode(self):

 if self.combo.get() != '':

 node = self.info.adf.nodes[self.combo.get()]

 self.info.node = node

 self.controller.frameCreation(EditNode, self.info)

 self.controller.show_frame(EditNode)

 elif self.combo2.get() != '':

 node = self.info.adf.nodes[self.combo2.get()]

 self.info.node = node

 self.controller.frameCreation(EditQuestion, self.info)

 self.controller.show_frame(EditQuestion)

 def questionOrder(self):

 self.controller.frameCreation(QuestionOrder, self.info)

 self.controller.show_frame(QuestionOrder)

 def createNode(self):

 self.info.editFlag = True

 self.controller.frameCreation(NodeSelection, self.info)

 self.controller.show_frame(NodeSelection)

 def saveNode(self):

 self.controller.frameCreation(SaveScreen, self.info)

 self.controller.show_frame(SaveScreen)

class EditNode(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.controller = controller

 self.info = info

123

 var = tk.StringVar()

 var.set("Domain Name:")

 var2 = tk.StringVar()

 var2.set(self.info.adf.name)

 self.var3 = tk.StringVar()

 self.var3.set("Node:")

 self.var4 = tk.StringVar()

 self.var4.set("{}".format(self.info.node.name))

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20")

 label.pack(side = 'left',anchor='nw')

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 20")

 label2.pack(side = 'left',anchor='nw')

 label3 = tk.Label(self, textvariable=self.var3,bg='#A7D0FF',font="Verdana 20 ")

 label3.place(relx = 0, rely=0.1)

 label4 = tk.Label(self, textvariable=self.var4,bg='#A7D0FF',font="Verdana 20 ")

 label4.place(relx = 0.15, rely=0.1)

 save = ttk.Button(self, text = 'SUBMIT',style= 'my.TButton',command= lambda: self.submit())

 save.place(relheight= 0.1 , relwidth = 0.3, relx = 0.35, rely=0.75)

 done = ttk.Button(self, text = 'DONE',style= 'my.TButton',command= lambda: self.done())

 done.place(relheight= 0.1 , relwidth = 0.3, relx = 0.35, rely=0.85)

 back = ttk.Button(self, text = 'BACK',style= 'my.TButton',command= lambda: self.back())

 back.place(relheight= 0.1 , relwidth = 0.3, relx = 0.02, rely=0.75)

 addAcceptance = ttk.Button(self, text = 'ADD ACCEPTANCE',style= 'my.TButton',com-

mand= lambda: self.accept())

 addAcceptance.place(relheight= 0.1 , relwidth = 0.3, relx = 0.66, rely=0.75)

 self.acceptDict = {}

 self.statementDict = {}

 self.acceptList = []

 self.statementList = []

 nameVar = tk.StringVar()

 nameVar.set("Name:")

 name = tk.Label(self, textvariable=nameVar,bg='#A7D0FF',font="Verdana 12 ")

 name.place(relx = 0, rely=0.2)

 self.nameEntry = tk.Entry(self,font='Verdana 12')

124

 self.nameEntry.place(relx = 0.2,rely = 0.2,relheight=0.05,relwidth=0.75)

 self.nameEntry.insert(tk.END, self.info.node.name)

 self.y=0.2

 #ACCEPTANCE CONDITIONS

 counter = 1

 for i in self.info.node.acceptanceOriginal:

 self.y+=0.05

 self.acceptDict[i] = tk.StringVar()

 self.acceptDict[i].set("Acceptance {}:".format(counter))

 labelAccept = tk.Label(self, textvariable=self.acceptDict[i],bg='#A7D0FF',font="Verdana 12")

 labelAccept.place(x=0.05, rely=self.y)

 acceptance = tk.Entry(self,font='Verdana 12')

 acceptance.place(relx = 0.2,rely = self.y,relheight=0.05,relwidth=0.75)

 acceptance.insert(tk.END, i)

 self.acceptList.append(acceptance)

 counter += 1

 #STATEMENTS

 counter = 1

 for j in self.info.node.statement:

 self.y+=0.05

 self.statementDict[j] = tk.StringVar()

 self.statementDict[j].set("Statement {}:".format(counter))

 labelStatement = tk.Label(self, textvariable=self.statementDict[j],bg='#A7D0FF',font="Ver-

dana 12")

 labelStatement.place(x=0.05, rely=self.y)

 statement = tk.Entry(self,font='Verdana 12')

 statement.place(relx = 0.2,rely = self.y,relheight=0.05,relwidth=0.75)

 statement.insert(tk.END, j)

 self.statementList.append(statement)

 counter+= 1

 def accept(self):

 self.y+=0.05

125

 stringVar = tk.StringVar()

 stringVar.set("Acceptance:")

 labelAccept = tk.Label(self, textvariable=stringVar,bg='#A7D0FF',font="Verdana 12")

 labelAccept.place(x=0.05, rely=self.y)

 acceptance = tk.Entry(self,font='Verdana 12')

 acceptance.place(relx = 0.2,rely = self.y,relheight=0.05,relwidth=0.75)

 #adds the entry box to the list of acceptance conditions

 self.acceptList.append(acceptance)

 self.y += 0.05

 stringVar2 = tk.StringVar()

 stringVar2.set("Statement:")

 labelStatement = tk.Label(self, textvariable=stringVar2,bg='#A7D0FF',font="Verdana 12")

 labelStatement.place(x=0.05, rely=self.y)

 statement = tk.Entry(self,font='Verdana 12')

 statement.place(relx = 0.2,rely = self.y,relheight=0.05,relwidth=0.75)

 self.statementList.append(statement)

 def submit(self):

 self.acceptance = []

 self.statements = []

 self.name = self.nameEntry.get()

 self.nameEntry.delete(0,10000000)

 for i in self.acceptList:

 self.acceptance.append(i.get())

 i.delete(0,10000000)

 for j in self.statementList:

 self.statements.append(j.get())

 j.delete(0,10000000)

 self.info.adf.nodes.pop(self.info.node.name)

 self.info.adf.addNodes(self.name, self.acceptance, self.statements)

 def back(self):

 self.controller.frameCreation(EditDomain, self.info)

 self.controller.show_frame(EditDomain)

126

 def done(self):

 questionGeneration = False

 for i in self.info.adf.nodes.values():

 if i.children == None and i.question == None:

 questionGeneration = True

 if questionGeneration == True:

 self.controller.frameCreation(QuestionCreation, self.info)

 self.controller.show_frame(QuestionCreation)

 else:

 self.controller.frameCreation(EditDomain, self.info)

 self.controller.show_frame(EditDomain)

class EditQuestion(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.controller = controller

 self.info = info

 var = tk.StringVar()

 var.set("Domain Name:")

 var2 = tk.StringVar()

 var2.set(self.info.adf.name)

 self.var3 = tk.StringVar()

 self.var3.set("Node:")

 self.var4 = tk.StringVar()

 self.var4.set("{}".format(self.info.node.name))

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20")

 label.pack(side = 'left',anchor='nw')

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 20")

 label2.pack(side = 'left',anchor='nw')

 label3 = tk.Label(self, textvariable=self.var3,bg='#A7D0FF',font="Verdana 20 ")

 label3.place(relx = 0, rely=0.1)

 label4 = tk.Label(self, textvariable=self.var4,bg='#A7D0FF',font="Verdana 20 ")

127

 label4.place(relx = 0.15, rely=0.1)

 save = ttk.Button(self, text = 'SUBMIT',style= 'my.TButton',command= lambda: self.submit())

 save.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.65)

 done = ttk.Button(self, text = 'DONE',style= 'my.TButton',command= lambda: self.done())

 done.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.75)

 back = ttk.Button(self, text = 'BACK',style= 'my.TButton',command= lambda: self.back())

 back.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.85)

 questionVar = tk.StringVar()

 questionVar.set("Question:")

 question = tk.Label(self, textvariable=questionVar,bg='#A7D0FF',font="Verdana 12 ")

 question.place(relx=0.01,rely=0.2)

 self.questionEntry = tk.Entry(self,font='Verdana 12')

 self.questionEntry.place(relx=0.2,rely=0.2,relheight=0.05,relwidth=0.75)

 try:

 self.questionEntry.insert(tk.END, self.info.node.question)

 except:

 pass

 def submit(self):

 self.question = self.questionEntry.get()

 self.info.adf.nodes[self.info.node.name].question = self.question

 self.questionEntry.delete(0,10000000)

 def back(self):

 self.controller.frameCreation(EditDomain, self.info)

 self.controller.show_frame(EditDomain)

 def done(self):

 self.controller.frameCreation(SaveScreen, self.info)

 self.controller.show_frame(SaveScreen)

#Create Domain Screens

class CreateDomain(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.controller = controller

 self.info = info

 var = tk.StringVar()

 var.set("Create Domain")

128

 var2 = tk.StringVar()

 var2.set("Specify Domain Name:")

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20 underline")

 label.pack()

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 12 underline")

 label2.place(relx = 0.02,rely = 0.2)

 help = tk.StringVar()

 help.set('?')

 helpLabel = tk.Label(self, textvariable=help,bg='#A7D0FF',fg='#FF001F',relief=RIDGE,font="Ver-

dana 12 bold")

 helpLabel.place(relx = 0.3,rely = 0.2)

 box = Balloon(self)

 box.bind_widget(helpLabel,balloonmsg="Please ensure your domain name has no spaces be-

tween words")

 self.entry = tk.Entry(self,font='Calibri 20')

 self.entry.place(relx = 0.32,rely = 0.35,relheight=0.1,relwidth=0.35)

 button = ttk.Button(self, text = 'OK',style= 'my.TButton',command= lambda: self.OK())

 button.place(relheight= 0.1 , relwidth = 0.1, relx = 0.45, rely=0.8)

 def OK(self):

 self.info.adf = ADF(self.entry.get())

 self.entry.delete(0,10000000)

 self.controller.frameCreation(NodeSelection, self.info)

 self.controller.show_frame(NodeSelection)

class NodeSelection(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.controller = controller

 self.info = info

 var = tk.StringVar()

 var.set("Node Creation")

 label = tk.Label(self, textvariable=var,font="Verdana 20 underline",bg='#A7D0FF')

 label.pack(pady=10,padx=10)

 help = tk.StringVar()

129

 help.set('?')

 helpLabel = tk.Label(self, textvariable=help,bg='#A7D0FF',fg='#FF001F',relief=RIDGE,font="Ver-

dana 20 bold")

 helpLabel.place(relx = 0.8,rely = 0.3)

 helpLabel1 = tk.Label(self, textvariable=help,bg='#A7D0FF',fg='#FF001F',relief=RIDGE,font="Ver-

dana 20 bold")

 helpLabel1.place(relx = 0.8,rely = 0.7)

 box = Balloon(self)

 box.bind_widget(helpLabel,balloonmsg="Create this type of node if you are creating non-leaf nodes")

 box.bind_widget(helpLabel1,balloonmsg="Create this type of node if you are creat-

ing a base level factor with multiple sub-factors")

 button = ttk.Button(self, text = 'Create a T/F Node',style='my.TButton',com-

mand = lambda: self.standardNode())

 button.place(relheight= 0.25 , relwidth = 0.5, relx=0.25, rely=0.2)

 button2 = ttk.Button(self, text = 'Create a Multiple Choice Node',style='my.TButton',com-

mand=lambda: self.multiNode())

 button2.place(relheight= 0.25 , relwidth = 0.5, relx = 0.25, rely=0.6)

 def standardNode(self):

 self.controller.frameCreation(NodeCreation, self.info)

 self.controller.show_frame(NodeCreation)

 def multiNode(self):

 self.controller.frameCreation(MultiCreation, self.info)

 self.controller.show_frame(MultiCreation)

class NodeCreation(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.name = ''

 self.acceptance = []

 self.statement = []

 self.controller = controller

 self.info = info

 var = tk.StringVar()

 var.set("Domain Name:")

130

 var2 = tk.StringVar()

 var2.set(self.info.adf.name)

 var3 = tk.StringVar()

 var3.set('Create Node')

 var4 = tk.StringVar()

 var4.set('Name:')

 var5 = tk.StringVar()

 var5.set('Acceptance:')

 var6 = tk.StringVar()

 var6.set('Statement:')

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20")

 label.pack(side = 'left',anchor='nw')

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 20")

 label2.pack(side = 'left',anchor='nw')

 label3 = tk.Label(self, textvariable=var3,bg='#A7D0FF',font="Verdana 20 underline")

 label3.place(relx = 0, rely=0.1)

 name = tk.Label(self, textvariable=var4,bg='#A7D0FF',font="Verdana 20 ")

 name.place(relx = 0, rely=0.2)

 help = tk.StringVar()

 help.set('?')

 helpLabel = tk.Label(self, textvariable=help,bg='#A7D0FF',fg='#FF001F',relief=RIDGE,font="Ver-

dana 20 bold")

 helpLabel.place(relx = 0.8,rely = 0.2)

 helpLabel1 = tk.Label(self, textvariable=help, bg='#A7D0FF',fg='#FF001F',relief=RIDGE,font="Ver-

dana 20 bold")

 helpLabel1.place(relx = 0.8,rely = 0.3)

 helpLabel2 = tk.Label(self, textvariable=help,bg='#A7D0FF',fg='#FF001F',relief=RIDGE,font="Ver-

dana 20 bold")

 helpLabel2.place(relx = 0.8,rely = 0.4)

 box = Balloon(self)

 box.bind_widget(helpLabel,balloonmsg="Please ensure your node name has no spaces")

 box.bind_widget(helpLabel1,balloonmsg="Please use the logical opera-

tors and, or, not\nYou can use brackets but there must be a space before and af-

ter them \nIf you want to create a reject condition use the keyword reject at the beginning ")

131

 box.bind_widget(helpLabel2,balloonmsg="This statement will be printed when the node is accepted")

 acceptance = tk.Label(self, textvariable=var5,bg='#A7D0FF',font="Verdana 20 ")

 acceptance.place(relx = 0, rely=0.3)

 statement = tk.Label(self, textvariable=var6,bg='#A7D0FF',font="Verdana 20 ")

 statement.place(relx = 0, rely=0.4)

 self.nameEntry = tk.Entry(self,font='Calibri 20')

 self.nameEntry.place(relx = 0.25,rely = 0.2,relheight=0.1,relwidth=0.5)

 self.acceptanceEntry = tk.Entry(self,font='Calibri 20')

 self.acceptanceEntry.place(relx = 0.25,rely = 0.3,relheight=0.1,relwidth=0.5)

 self.statementEntry = tk.Entry(self,font='Calibri 20')

 self.statementEntry.place(relx = 0.25,rely = 0.4,relheight=0.1,relwidth=0.5)

 addDefault = ttk.Button(self, text = 'NEXT',style= 'my.TButton',command= lambda: self.addDe-

fault())

 addDefault.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.85)

 addCondition = ttk.Button(self, text = 'ADD CONDITION',style= 'my.TButton',com-

mand= lambda: self.addCondition())

 addCondition.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.75)

 def addDefault(self):

 self.info.name = self.name

 self.info.acceptance = self.acceptance

 self.info.statement = self.statement

 self.acceptanceEntry.delete(0,10000000)

 self.statementEntry.delete(0,10000000)

 self.nameEntry.delete(0,10000000)

 self.controller.frameCreation(DefaultCreation, self.info)

 self.controller.show_frame(DefaultCreation)

 def addCondition(self):

 if self.nameEntry.get() != '':

 self.name = self.nameEntry.get()

 acceptance = self.acceptanceEntry.get()

 statement = self.statementEntry.get()

 if acceptance != '':

 self.acceptance.append(acceptance)

 self.statement.append(statement)

132

 self.acceptanceEntry.delete(0,10000000)

 self.statementEntry.delete(0,10000000)

class MultiCreation(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.name = ''

 self.acceptance = []

 self.statement = []

 self.question = ''

 self.controller = controller

 self.info = info

 var = tk.StringVar()

 var.set("Domain Name:")

 var2 = tk.StringVar()

 var2.set(self.info.adf.name)

 var3 = tk.StringVar()

 var3.set('Create Node')

 var4 = tk.StringVar()

 var4.set('Name:')

 var5 = tk.StringVar()

 var5.set('Acceptance:')

 var6 = tk.StringVar()

 var6.set('Statement:')

 var7 = tk.StringVar()

 var7.set('Question:')

 help = tk.StringVar()

 help.set('?')

 helpLabel = tk.Label(self, textvariable=help,bg='#A7D0FF',fg='#FF001F',relief=RIDGE,font="Ver-

dana 20 bold")

 helpLabel.place(relx = 0.8,rely = 0.2)

 helpLabel1 = tk.Label(self, textvariable=help,bg='#A7D0FF',fg='#FF001F',relief=RIDGE,font="Ver-

dana 20 bold")

133

 helpLabel1.place(relx = 0.8,rely = 0.3)

 helpLabel2 = tk.Label(self, textvariable=help,bg='#A7D0FF',fg='#FF001F',relief=RIDGE,font="Ver-

dana 20 bold")

 helpLabel2.place(relx = 0.8,rely = 0.4)

 helpLabel3 = tk.Label(self, textvariable=help,bg='#A7D0FF',fg='#FF001F',relief=RIDGE,font="Ver-

dana 20 bold")

 helpLabel3.place(relx = 0.8,rely = 0.5)

 box = Balloon(self)

 box.bind_widget(helpLabel,balloonmsg="Please ensure your node name has no spaces")

 box.bind_widget(helpLabel1,balloonmsg="Please use the logical opera-

tors and, or, not\nYou can use brackets but there must be a space before and af-

ter them \nIf you want to create a reject condition use the keyword reject at the beginning ")

 box.bind_widget(helpLabel2,balloonmsg="This statement will be printed when the node is accepted")

 box.bind_widget(helpLabel3,balloonmsg="Set the question which will be asked to determine this ac-

ceptance condition\nThe possible answers will be taken from the acceptance conditions")

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20")

 label.pack(side = 'left',anchor='nw')

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 20")

 label2.pack(side = 'left',anchor='nw')

 label3 = tk.Label(self, textvariable=var3,bg='#A7D0FF',font="Verdana 20 underline")

 label3.place(relx = 0, rely=0.1)

 name = tk.Label(self, textvariable=var4,bg='#A7D0FF',font="Verdana 20 ")

 name.place(relx = 0, rely=0.2)

 acceptance = tk.Label(self, textvariable=var5,bg='#A7D0FF',font="Verdana 20 ")

 acceptance.place(relx = 0, rely=0.3)

 statement = tk.Label(self, textvariable=var6,bg='#A7D0FF',font="Verdana 20 ")

 statement.place(relx = 0, rely=0.4)

 question = tk.Label(self, textvariable=var7,bg='#A7D0FF',font="Verdana 20 ")

 question.place(relx = 0, rely=0.5)

 self.nameEntry = tk.Entry(self,font='Calibri 20')

 self.nameEntry.place(relx = 0.25,rely = 0.2,relheight=0.1,relwidth=0.5)

 self.acceptanceEntry = tk.Entry(self,font='Calibri 20')

 self.acceptanceEntry.place(relx = 0.25,rely = 0.3,relheight=0.1,relwidth=0.5)

134

 self.statementEntry = tk.Entry(self,font='Calibri 20')

 self.statementEntry.place(relx = 0.25,rely = 0.4,relheight=0.1,relwidth=0.5)

 self.questionEntry = tk.Entry(self,font='Calibri 20')

 self.questionEntry.place(relx = 0.25,rely = 0.5,relheight=0.1,relwidth=0.5)

 addDefault = ttk.Button(self, text = 'NEXT',style= 'my.TButton',command= lambda: self.addDe-

fault())

 addDefault.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.85)

 addCondition = ttk.Button(self, text = 'ADD CONDITION',style= 'my.TButton',com-

mand= lambda: self.addCondition())

 addCondition.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.65)

 addQuestion = ttk.Button(self, text = 'ADD QUESTION',style= 'my.TButton',com-

mand= lambda: self.addQuestion())

 addQuestion.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.75)

 def addQuestion(self):

 if self.questionEntry.get() != '':

 self.question = self.questionEntry.get()

 if self.info.editFlag:

 self.info.adf.questionOrder.append(self.nameEntry.get())

 self.questionEntry.delete(0,10000000)

 def addDefault(self):

 self.info.name = self.name

 self.info.acceptance = self.acceptance

 self.info.statement = self.statement

 self.info.question = self.question

 self.info.multiFlag = True

 self.acceptanceEntry.delete(0,10000000)

 self.statementEntry.delete(0,10000000)

 self.nameEntry.delete(0,10000000)

 self.questionEntry.delete(0,10000000)

 self.controller.frameCreation(DefaultCreation, self.info)

 self.controller.show_frame(DefaultCreation)

 def addCondition(self):

 if self.nameEntry.get() != '':

 self.name = self.nameEntry.get()

135

 acceptance = self.acceptanceEntry.get()

 statement = self.statementEntry.get()

 if acceptance != '':

 self.acceptance.append(acceptance)

 self.statement.append(statement)

 self.acceptanceEntry.delete(0,10000000)

 self.statementEntry.delete(0,10000000)

class DefaultCreation(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.info = info

 self.name = self.info.name

 self.acceptance = self.info.acceptance

 self.statement = self.info.statement

 self.question = self.info.question

 self.controller = controller

 var = tk.StringVar()

 var.set("Domain Name:")

 var2 = tk.StringVar()

 var2.set(self.info.adf.name)

 var3 = tk.StringVar()

 var3.set('Create Node')

 var6 = tk.StringVar()

 var6.set('Default Statement:')

 help = tk.StringVar()

 help.set('?')

 helpLabel = tk.Label(self, textvariable=help,bg='#A7D0FF',fg='#FF001F',relief=RIDGE,font="Ver-

dana 20 bold")

 helpLabel.place(relx = 0.8,rely = 0.3)

 box = Balloon(self)

 box.bind_widget(helpLabel,balloonmsg="This statement will print if the node is not accepted")

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20")

136

 label.pack(side = 'left',anchor='nw')

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 20")

 label2.pack(side = 'left',anchor='nw')

 label3 = tk.Label(self, textvariable=var3,bg='#A7D0FF',font="Verdana 20 underline")

 label3.place(relx = 0, rely=0.1)

 default = tk.Label(self, textvariable=var6,bg='#A7D0FF',font="Verdana 20 ")

 default.place(relx = 0, rely=0.2)

 self.defaultEntry = tk.Entry(self,font='Calibri 20')

 self.defaultEntry.place(relx = 0.25,rely = 0.3,relheight=0.1,relwidth=0.5)

 end = ttk.Button(self, text = 'END',style= 'my.TButton',command= lambda: self.end())

 end.place(relheight= 0.1 , relwidth = 0.1, relx = 0.46, rely=0.8)

 addStatement = ttk.Button(self, text = 'ADD STATEMENT',style= 'my.TButton',com-

mand= lambda: self.addStatement())

 addStatement.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.5)

 addNode = ttk.Button(self, text = 'ADD T/F NODE',style= 'my.TButton',com-

mand= lambda: self.standardNode())

 addNode.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.6)

 addMulti = ttk.Button(self, text = 'ADD MULTI NODE',style= 'my.TButton',com-

mand= lambda: self.multiNode())

 addMulti.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.7)

 def addStatement(self):

 statement = self.defaultEntry.get()

 if statement != '':

 self.statement.append(statement)

 self.defaultEntry.delete(0,10000000)

 def end(self):

 self.addNodeADF()

 self.info.multiFlag = False

 questionGeneration = False

 for i in self.info.adf.nodes.values():

137

 if i.children == None and i.question == None:

 questionGeneration = True

 if questionGeneration == True:

 self.controller.frameCreation(QuestionCreation, self.info)

 self.controller.show_frame(QuestionCreation)

 elif self.info.editFlag:

 self.controller.frameCreation(EditDomain, self.info)

 self.controller.show_frame(EditDomain)

 self.info.editFlag = False

 else:

 self.controller.frameCreation(SaveScreen, self.info)

 self.controller.show_frame(SaveScreen)

 def standardNode(self):

 self.addNodeADF()

 self.controller.frameCreation(NodeCreation, self.info)

 self.controller.show_frame(NodeCreation)

 self.info.multiFlag = False

 def multiNode(self):

 self.addNodeADF()

 self.controller.frameCreation(MultiCreation, self.info)

 self.controller.show_frame(MultiCreation)

 def addNodeADF(self):

 if self.info.multiFlag == True:

 self.info.adf.addMulti(self.name, self.acceptance, self.statement, self.question)

 else:

 self.info.adf.addNodes(self.name, self.acceptance, self.statement)

class QuestionCreation(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.info = info

 self.controller = controller

138

 name = self.info.adf.questionAssignment()

 self.nameVar = tk.StringVar()

 self.nameVar.set(name)

 self.name = name

 self.nameLabel = tk.Label(self, textvariable=self.nameVar,bg='#A7D0FF',font="Verdana 20 ")

 self.nameLabel.place(relx = 0.25, rely=0.2)

 var = tk.StringVar()

 var.set("Domain Name:")

 var2 = tk.StringVar()

 var2.set(self.info.adf.name)

 var3 = tk.StringVar()

 var3.set('Set Questions for Base-Level Factors')

 var4 = tk.StringVar()

 var4.set('Name:')

 var7 = tk.StringVar()

 var7.set('Question:')

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20")

 label.pack(side = 'left',anchor='nw')

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 20")

 label2.pack(side = 'left',anchor='nw')

 label3 = tk.Label(self, textvariable=var3,bg='#A7D0FF',font="Verdana 20 underline")

 label3.place(relx = 0, rely=0.1)

 name = tk.Label(self, textvariable=var4,bg='#A7D0FF',font="Verdana 20 ")

 name.place(relx = 0, rely=0.2)

 question = tk.Label(self, textvariable=var7,bg='#A7D0FF',font="Verdana 20 ")

 question.place(relx = 0, rely=0.3)

 self.questionEntry = tk.Entry(self,font='Calibri 20')

 self.questionEntry.place(relx = 0.25,rely = 0.3,relheight=0.1,relwidth=0.5)

 next = ttk.Button(self, text = 'NEXT',style= 'my.TButton',command= lambda: self.next())

 next.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.85)

 addQuestionEntry = ttk.Button(self, text = 'ADD QUESTION',style= 'my.TButton',com-

mand= lambda: self.addQuestion())

 addQuestionEntry.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.75)

139

 def addQuestion(self):

 node = self.info.adf.nodes[self.name]

 if self.questionEntry != '':

 node.question = self.questionEntry.get()

 if self.info.editFlag:

 self.info.adf.questionOrder.append(node.name)

 self.questionEntry.delete(0,10000000)

 def next(self):

 if self.info.adf.questionAssignment() == None:

 if self.info.editFlag == True:

 self.controller.frameCreation(EditDomain, self.info)

 self.controller.show_frame(EditDomain)

 self.info.editFlag = False

 else:

 self.controller.frameCreation(QuestionOrder, self.info)

 self.controller.show_frame(QuestionOrder)

 else:

 name = self.info.adf.questionAssignment()

 self.nameVar.set(name)

 self.name = name

class QuestionOrder(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.info = info

 self.controller = controller

 var = tk.StringVar()

 var.set("Domain Name:")

 var2 = tk.StringVar()

 var2.set(self.info.adf.name)

 var3 = tk.StringVar()

 var3.set('Set Question Order')

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20")

 label.pack(side = 'left',anchor='nw')

140

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 20")

 label2.pack(side = 'left',anchor='nw')

 label3 = tk.Label(self, textvariable=var3,bg='#A7D0FF',font="Verdana 20 underline")

 label3.place(relx = 0, rely=0.1)

 next = ttk.Button(self, text = 'DONE',style= 'my.TButton',command= lambda: self.done())

 next.place(relheight= 0.1 , relwidth = 0.3, relx = 0.65, rely=0.65)

 up = ttk.Button(self, text = 'UP',style= 'my.TButton',command= lambda: self.up())

 up.place(relheight= 0.1 , relwidth = 0.3, relx = 0.65, rely=0.45)

 down = ttk.Button(self, text = 'DOWN',style= 'my.TButton',command= lambda: self.down())

 down.place(relheight= 0.1 , relwidth = 0.3, relx = 0.65, rely=0.55)

 self.nodeDict = {}

 self.questionList = []

 #CHANGE

 if self.info.adf.questionOrder == []:

 for node in self.info.adf.nodes.values():

 if node.question != None:

 self.questionList.append(node.question)

 self.nodeDict[node.question] = node

 else:

 for name in self.info.adf.questionOrder:

 node = self.info.adf.nodes[name]

 if node.question != None:

 self.questionList.append(node.question)

 self.nodeDict[node.question] = node

 for node in self.info.adf.nodes.values():

 if node.question != None and node.question not in self.questionList:

 self.questionList.append(node.question)

 self.nodeDict[node.question] = node

 n = tk.StringVar(value=self.questionList)

 self.list = tk.Listbox(self, height=20, width = 70, listvariable = n)

 self.list.place(relx = 0.05, rely=0.25)

 def done(self):

 newOrder = []

141

 for i in self.questionList:

 x = self.nodeDict[i]

 newOrder.append(x.name)

 self.info.adf.questionOrder = newOrder

 self.controller.frameCreation(EditDomain, self.info)

 self.controller.show_frame(EditDomain)

 def up(self):

 try:

 index = self.list.curselection()[0]

 if index == 0:

 pass

 else:

 text=self.list.get(index)

 self.list.delete(index)

 self.list.insert(index-1, text)

 self.questionList.pop(index)

 self.questionList.insert(index-1, text)

 self.list.selection_set(index-1)

 except:

 pass

 def down(self):

 try:

 index = self.list.curselection()[0]

 text=self.list.get(index)

 self.list.delete(index)

 self.list.insert(index+1, text)

 self.questionList.pop(index)

 self.questionList.insert(index+1, text)

 self.list.selection_set(index+1)

 except:

 pass

class SaveScreen(Background):

142

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.info = info

 self.controller = controller

 name = self.info.adf.questionAssignment()

 self.name = name

 var = tk.StringVar()

 var.set("Domain Name:")

 var2 = tk.StringVar()

 var2.set(self.info.adf.name)

 var3 = tk.StringVar()

 var3.set('Save ADF as .xlsx file')

 var4 = tk.StringVar()

 var4.set('Filename:')

 help = tk.StringVar()

 help.set('?')

 helpLabel = tk.Label(self, textvariable=help,bg='#A7D0FF',fg='#FF001F',relief=RIDGE,font="Ver-

dana 20 bold")

 helpLabel.place(relx = 0.8,rely = 0.2)

 box = Balloon(self)

 box.bind_widget(helpLabel,balloonmsg="Please ensure your filename has no spaces")

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20")

 label.pack(side = 'left',anchor='nw')

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 20")

 label2.pack(side = 'left',anchor='nw')

 label3 = tk.Label(self, textvariable=var3,bg='#A7D0FF',font="Verdana 20 underline")

 label3.place(relx = 0, rely=0.1)

 name = tk.Label(self, textvariable=var4,bg='#A7D0FF',font="Verdana 20 ")

 name.place(relx = 0, rely=0.2)

 self.fileName = tk.Entry(self,font='Calibri 20')

 self.fileName.place(relx = 0.25,rely = 0.2,relheight=0.1,relwidth=0.5)

143

 save = ttk.Button(self, text = 'SAVE',style= 'my.TButton',command= lambda: self.save())

 save.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.75)

 menu = ttk.Button(self, text = 'MENU',style= 'my.TButton',command= lambda: self.menu())

 menu.place(relheight= 0.1 , relwidth = 0.35, relx = 0.32, rely=0.85)

 def save(self):

 if self.fileName.get() != '':

 filename = self.fileName.get()

 self.info.adf.saveNew(filename)

 varDone = tk.StringVar()

 varDone.set('DONE')

 self.done = tk.Label(self, textvariable=varDone,bg='#A7D0FF',font="Verdana 20")

 self.done.place(relx = 0.42, rely=0.4)

 else:

 pass

 def menu(self):

 self.controller.show_frame(MainMenu)

class Report(Background):

 def __init__(self,parent,controller, info):

 Background.__init__(self,parent)

 self.controller = controller

 self.info = info

 self.graph = self.info.adf.visualiseNetwork(self.info.adf.case)

 var = tk.StringVar()

 var.set("Domain Name:")

 var2 = tk.StringVar()

 var2.set(self.info.adf.name)

 self.var3 = tk.StringVar()

 self.var3.set("Report for {}:".format(self.info.caseName))

 label = tk.Label(self, textvariable=var,bg='#A7D0FF',font="Verdana 20 underline")

 label.pack(side = 'left',anchor='nw')

144

 label2 = tk.Label(self, textvariable=var2,bg='#A7D0FF',font="Verdana 20")

 label2.pack(side = 'left',anchor='nw')

 label3 = tk.Label(self, textvariable=self.var3,bg='#A7D0FF',font="Verdana 20")

 label3.place(relx = 0.05, rely=0.1)

 nodeNames = set()

 for i in self.graph.get_node_list():

 nodeNames.add(i.get_name())

 #make a set so it only counts unique nodes

 numNodes = len(nodeNames)

 var4 = tk.StringVar()

 var4.set("{} nodes in this domain".format(numNodes))

 label4 = tk.Label(self, textvariable=var4,bg='#A7D0FF',font="Verdana 16")

 label4.place(relx = 0.05, rely=0.2)

 numAccepted = len(self.info.adf.case)

 var5 = tk.StringVar()

 var5.set("{} nodes accepted in this case".format(numAccepted))

 label5 = tk.Label(self, textvariable=var5,bg='#A7D0FF',font="Verdana 16")

 label5.place(relx = 0.05, rely=0.3)

 var6 = tk.StringVar()

 var6.set("Factors in this case: ")

 label6 = tk.Label(self, textvariable=var6,bg='#A7D0FF',font="Verdana 16")

 label6.place(relx = 0.05, rely=0.4)

 n = tk.StringVar()

 self.combo = ttk.Combobox(self, width = 50, textvariable = n, state='readonly')

 self.combo['values'] = self.info.case

 self.combo.place(relx = 0.45, rely=0.41)

 outcome = self.info.adf.statements[-1]

 var7 = tk.StringVar()

 var7.set("Outcome: {}".format(outcome))

 label7 = tk.Label(self, textvariable=var7,bg='#A7D0FF',font="Verdana 16")

 label7.place(relx = 0.05, rely=0.5)

145

 visualise = ttk.Button(self, text = 'VISUALISE',style= 'my.TButton',command= lambda: self.visual-

ise())

 visualise.place(relheight= 0.1 , relwidth = 0.2, relx = 0.42, rely=0.75)

 back = ttk.Button(self, text = 'BACK',style= 'my.TButton',command= lambda: self.back())

 back.place(relheight= 0.1 , relwidth = 0.2, relx = 0.42, rely=0.85)

 self.fileName = tk.Entry(self,font='Calibri 16')

 self.fileName.place(relx = 0.3,rely = 0.65,relheight=0.07,relwidth=0.5)

 var4 = tk.StringVar()

 var4.set('Filename:')

 filename = tk.Label(self, textvariable=var4,bg='#A7D0FF',font="Verdana 16 ")

 filename.place(relx = 0.05, rely=0.65)

 def visualise(self):

 if self.fileName.get() != '':

 filename = self.fileName.get()

 self.graph.write_png('{}.png'.format(filename))

 os.startfile('{}.png'.format(filename))

 def back(self):

 self.controller.show_frame(Outcome)

app = UI()

app.mainloop()

H.4 WildAnimals.py

This file initialises the Wild Animals domain. adf() adds the node data to the ADF. cases()

contains the base-level factors for each case in the test dataset. expectedOutcome() contains

the expected outcome data for the test dataset.

from MainClasses import *

def adf():

 """

 the adf for the domain

 """

 adf = ADF('WildAnimals')

146

 #non-leaf factors

 adf.addNodes('Decide',['Ownership or (RightToPursue and IllegalAct and not NoBlame)','RightToPur-

sue and IllegalAct'],['find for the plaintiff, find against the defendant','do not find for the plaintiff, the de-

fendant did not act illegally, do not find against the defendant','do not find for the plaintiff, find for the de-

fendant'])

 adf.addNodes('RightToPursue',['OwnsLand or ((HotPursuit and PMotive) or (PMo-

tive and (not DMotive)))'],['plaintiff had a right to pursue the quarry','plaintiff had no right to pur-

sue the quarry'])

 adf.addNodes('Ownership',['(OwnsLand and Resident) or Convention or Capture'],['the plain-

tiff owned the quarry','the plaintiff did not own the quarry'])

 adf.addNodes('IllegalAct',['Trespass or Assault'],['an illegal act was committed','no illegal act was com-

mitted'])

 adf.addNodes('Trespass',['LegalOwner and AntiSocial'],['defendant committed trespass','defendant com-

mitted no trespass'])

 adf.addNodes('AntiSocial',['(Nuisance or Impolite) and (not DMotive)'],['defendant committed an an-

tisocial act','defendant committed no antisocial acts'])

 adf.addNodes('PMotive',['PLiving or ((PSport or PGain) and (not DLiving))'],['plain-

tiff has good motive','plantiff has no good motive'])

 adf.addNodes('DMotive',['not Malice and (DLiving or DSport or DGain)'],['defendant has good mo-

tive','defendant has no good motive'])

 adf.addNodes('Capture',['not NotCaught'],['the plaintiff had captured the quarry','the plain-

tiff had not captured the quarry'])

 adf.addNodes('OwnsLand',['LegalOwner'],['plaintiff owned the land','plaintiff did not own the land'])

 #questions

 adf.addNodes('NoBlame',question='Was the defendant blameless in the interference of the plain-

tiff\'s pursuit?')

 adf.addNodes('Resident',question='Did the quarry reside on the land?')

 adf.addNodes('Convention',question='Is the possession of the quarry governed by convention?')

 adf.addNodes('Assault',question='Did an assault prevent the plaintiff from retaining posses-

sion of the quarry?')

 adf.addNodes('LegalOwner',question='Was the plaintiff the legal owner of the land?')

 adf.addNodes('Nuisance',question='Did the defendant\'s interference with the plaintiff\'s pur-

suit amount to a nuisance?')

 adf.addNodes('Impolite',question='Was the interference of the defendant in the plaintiff\'s pursuits impo-

lite?')

 adf.addNodes('PLiving',question='Was the plaintiff pursuing the quarry for their livelihood?')

 adf.addNodes('PSport',question='Was the plaintiff pursuing the quarry for sport?')

 adf.addNodes('PGain',question='Did the plaintiff seek to personally gain from the quarry?')

 adf.addNodes('DLiving',question='Was the defendant pursuing the quarry for their livelihood?')

 adf.addNodes('Malice',question='Was the defendant malicious in their motive?')

 adf.addNodes('DSport',question='Was the defendant pursuing the quarry for sport?')

 adf.addNodes('DGain',question='Did the defendant seek to personally gain from the quarry?')

 adf.addNodes('NotCaught',question='Was the quarry not caught by the plaintiff?')

 adf.addNodes('HotPursuit',question='Was the plaintiff in hot pursuit of the quarry?')

 adf.questionOrder = ['PSport','PGain','PLiving','DSport','DGain','DLiving','Malice','HotPur-

suit','NotCaught','LegalOwner','Impolite','Nuisance','Assault','Resident','Convention','NoBlame']

147

 return adf

def cases():

 """

 test cases

 """

 keeble = ['NotCaught','LegalOwner','Malice','Nuisance','DSport','PLiving']

 pierson = ['NotCaught','HotPursuit','Impolite','PSport','Vermin']

 young = ['NotCaught','HotPursuit','Impolite','PLiving','DLiving']

 ghen = ['NotCaught','Convention','NoBlame','PLiving','DLiving']

 popov = ['NotCaught','HotPursuit','Assault','NoBlame','PGain','DGain']

 cases = {'Keeble v Hickeringill':keeble,'Pierson v Post':pierson,'Young v Hitch-

ens':young,'Ghen v Rich':ghen,'Popov v Hayashi':popov}

 return cases

def expectedOutcomeCases():

 """

 first factor is the outcome - the other factors are those from the prolog program of the domain

 """

 keeble = ['find for the plaintiff, find against the defendant','IllegalAct','Trespass','AntiSocial','RightTo-

Pursue','OwnsLand','PMotive','NotCaught','LegalOwner','Malice','Nuisance','DSport','PLiving']

 pierson = ['do not find for the plaintiff, find for the defendant','AntiSocial','RightToPursue','PMo-

tive','NotCaught','HotPursuit','Impolite','PSport','Vermin']

 young = ['do not find for the plaintiff, find for the defendant','RightToPursue','DMotive','PMo-

tive','NotCaught','HotPursuit','Impolite','PLiving','DLiving']

 ghen = ['find for the plaintiff, find against the defendant','DMotive','PMotive','Owner-

ship','NotCaught','Convention','NoBlame','PLiving','DLiving']

 popov = ['do not find for the plaintiff, the defendant did not act illegally, do not find against the defend-

ant','IllegalAct','RightToPursue','DMotive','PMotive','NotCaught','HotPursuit','Assault','No-

Blame','PGain','DGain']

 cases = {'Keeble v Hickeringill':keeble,'Pierson v Post':pierson,'Young v Hitch-

ens':young,'Ghen v Rich':ghen,'Popov v Hayashi':popov}

 return cases

H.5 TradeSecrets.py

This file initialises the Trade Secrets domain. adf() adds the node data to the ADF. cases()

contains the base-level factors for each case in the test dataset. expectedOutcome() contains

the expected outcome data for the test dataset.

148

from MainClasses import *

def adf():

 """

 creates the ADF for the domain

 """

 adf = ADF('TradeSecrets')

 #non-leaf factors

 adf.addNodes('Decide',['(not DefendantOwnershipRights) and (TradeSecretMisappropriation and (Im-

properMeans or ConfidentialRelationship))'],['a trade secret was misappropriated, find for plain-

tiff','no trade secret was misappropriated, find for defendant'])

 adf.addNodes('TradeSecretMisappropriation',['EffortstoMaintainSecrecy and InfoValuable and not In-

foKnownOrAvailiable'],['information was a trade secret','information was not a trade secret'])

 adf.addNodes('EffortstoMaintainSecrecy',['SecurityMeasures or MaintainSecrecyDefendant or Main-

tainSecrecyOutsiders or not NoSecurityMeasures'],['efforts were taken to maintain secrecy','no ef-

forts were taken to maintain secrecy'])

 adf.addNodes('InfoValuable',['UniqueProduct or CompetitiveAdvantage or not InfoKnownOrAvailia-

ble'],['the information was valuable','the information was not valuable'])

 adf.addNodes('InfoKnownOrAvailiable',['InfoKnown or InfoAvailiableElsewhere'],['the infor-

mation was known or availiable','the information was neither known nor availiable'])

 adf.addNodes('InfoKnown',['InfoKnownToCompetitors and not UniqueProduct'],['infor-

mation is known','information is not known'])

 adf.addNodes('InfoAvailiableElsewhere',['(InfoReverseEngineerable or InfoObtainableElse-

where) and not (InfoReverseEngineerable and (RestrictedMaterialsUsed or IdenticalProd-

ucts))'],['the information was availiable elsewhere','the information was not availiable elsewhere'])

 adf.addNodes('ImproperMeans',['QuestionableMeans and not LegitimatelyObtainable'],['im-

proper means were used','improper means were not used'])

 adf.addNodes('QuestionableMeans',['(not InfoReverseEngineered and not InfoIndependentlyGener-

ated) and (InvasiveTechniques or Deception or RestrictedMaterialsUsed or BribeEmployee)'],['question-

able means were used','questionable means were not used'])

 adf.addNodes('InfoUsed',['BroughtTools or IdenticalProducts or CompetitiveAdvantage or not InfoInde-

pendentlyGenerated'],['the information was used','the information was not used'])

 adf.addNodes('ConfidentialRelationship',['NoticeOfConfidentiality or ConfidentialityAgree-

ment'],['there was a confidential relationship','there was no confidential relationship'])

 adf.addNodes('NoticeOfConfidentiality',['WaiverOfConfidentiality or KnewInfoConfidential or Restrict-

edMaterialsUsed or NoncompetitionAgreement or AgreedNotToDisclose'],['defendant was on no-

tice of confidentiality','defendant was not on notice of confidentiality'])

 adf.addNodes('LegitimatelyObtainable',['InfoKnownOrAvailiable and not QuestionableMeans'],['the in-

formation was legitimately obtained','the information was not legitimately obtained'])

 adf.addNodes('ConfidentialityAgreement',['AgreedNotToDisclose and not WaiverOfConfidentiali-

ty'],['there was a confidentiality agreement','there was no confidentiality agreement'])

 adf.addNodes('MaintainSecrecyDefendant',['AgreedNotToDisclose'],['efforts made vis a vis defend-

ant','no efforts made vis a vis defendant'])

 adf.addNodes('MaintainSecrecyOutsiders',['OutsiderDisclosuresRestricted'],['efforts made vis a vis out-

siders','no efforts made vis a vis outsiders'])

149

 adf.addNodes('DefendantOwnershipRights',['EmployeeSoleDeveloper'],['defend-

ant is owner of secret','defendant is not owner of secret'])

 #leaf factors and questions

 adf.addNodes('BribeEmployee',question='Did the defendant offer the plaintiff\'s current or former em-

ployee an incentive to work for the defendant?')

 adf.addNodes('EmployeeSoleDeveloper',question='Was the defendant the sole developer of the prod-

uct whilst employed by the plaintiff?')

 adf.addNodes('AgreedNotToDisclose',question='Had the defendant entered into a non-disclosure agree-

ment with the plaintiff?')

 adf.addNodes('SecurityMeasures',question='Did the plaintiff take measures to ensure the secu-

rity of its information?')

 adf.addNodes('BroughtTools',question='Did an employee of the plaintiff give product development in-

formation to the defendant?')

 adf.addNodes('CompetitiveAdvantage',question='Did the plaintiff\'s product information allow the de-

fendant to save time or expense?')

 adf.addNodes('OutsiderDisclosuresRestricted',question='Was the plaintiff\'s disclosure to outsiders sub-

ject to confidential restrictions?')

 adf.addNodes('NoncompetitionAgreement',question='Had the plantiff and the defendant en-

tered into a noncompetition agreement?')

 adf.addNodes('RestrictedMaterialsUsed',question='Did the defendant use materials that were sub-

ject to confidentiality restrictions?')

 adf.addNodes('UniqueProduct',question='Is the product of the plaintiff unique?')

 adf.addNodes('InfoReverseEngineerable',question='Could the plaintiff\'s product infor-

mation have been learned by reverse engineering?')

 adf.addNodes('InfoIndependentlyGenerated',question='Did the defendant develop its product through in-

dependent research?')

 adf.addNodes('IdenticalProducts',question='Was the defendant\'s product identical to the plaintiff\'s?')

 adf.addNodes('NoSecurityMeasures',question='Did the plaintiff not adopt any secu-

rity measures to maintain the secrecy of their information?')

 adf.addNodes('InfoKnownToCompetitors',question='Was the plaintiff\'s information known to competi-

tors?')

 adf.addNodes('KnewInfoConfidential',question='Did the defendant know the plaintiff\'s infor-

mation was confidential?')

 adf.addNodes('InvasiveTechniques',question='Did the defendant use invasive techniques to gain ac-

cess to the plaintiff\'s information? ')

 adf.addNodes('WaiverOfConfidentiality',question='Had the plaintiff entered into an agree-

ment that waived confidentiality?')

 adf.addNodes('InfoObtainableElsewhere',question='Could the information have been obtained from pub-

licly availiable sources?')

 adf.addNodes('InfoReverseEngineered',question='Did the defendant discover the plaintiff\'s product in-

formation through reverse engineering?')

 adf.addNodes('Deception',question='Did the defendant obtain the plaintiff\'s information through decep-

tion?')

 adf.questionOrder = ['BribeEmployee','EmployeeSoleDeveloper','AgreedNotToDisclose','Securi-

tyMeasures','BroughtTools','CompetitiveAdvantage','OutsiderDisclosuresRestricted','Noncompetition-

150

Agreement','RestrictedMaterialsUsed','UniqueProduct','InfoReverseEngineerable','InfoReverseEngi-

neered','InfoIndependentlyGenerated','IdenticalProducts','NoSecurityMeasures','InfoKnownToCompeti-

tors','KnewInfoConfidential','InvasiveTechniques','WaiverOfConfidentiality','InfoObtainableElse-

where','Deception']

 return adf

def cases():

 """

 test cases

 """

 arco = ['SecretsDisclosedOutsiders', 'InfoReverseEngineerable','InfoKnownToCompetitors'] #pass

 boeing = ['AgreedNotToDisclose','SecurityMeasures','OutsiderDisclosuresRestricted','RestrictedMateri-

alsUsed','KnewInfoConfidential','DisclosureInNegotations','SecretsDisclosedOutsiders'] #pass

 bryce = ['AgreedNotToDisclose','SecurityMeasures','IdenticalProducts','KnewInfoConfidential','Disclo-

sureInNegotations'] #pass

 collegeWatercolour = ['UniqueProduct','Deception','DisclosureInNegotations'] #pass

 denTalEz = ['AgreedNotToDisclose','SecurityMeasures','KnewInfoConfidential','Deception','Disclo-

sureInNegotations'] #pass

 ecolgix = ['KnewInfoConfidential','DisclosureInNegotations','NoSecurityMeasures','WaiverOfConfiden-

tiality'] #pass

 emery = ['IdenticalProducts','KnewInfoConfidential','SecretsDisclosedOutsiders'] #pass

 ferranti = ['BribeEmployee','InfoIndependentlyGenerated','NoSecurityMeasures','InfoKnownToCompet-

itors','DisclosureInPublicForum'] #pass

 robinson = ['IdenticalProducts','Deception','DisclosureInNegotations','SecretsDisclosedOutsiders','NoSe-

curityMeasures'] #pass

 sandlin = ['DisclosureInNegotations','SecretsDisclosedOutsiders','InfoReverseEngineerable','NoSecuri-

tyMeasures','DisclosureInPublicForum'] #pass

 sheets = ['IdenticalProducts','NoSecurityMeasures','DisclosureInPublicForum'] #pass

 spaceAero = ['CompetitiveAdvantage','UniqueProduct','IdenticalProducts','DisclosureInNegota-

tions','NoSecurityMeasures'] #pass

 televation = ['SecurityMeasures','OutsiderDisclosuresRestricted','UniqueProduct','IdenticalProd-

ucts','KnewInfoConfidential','SecretsDisclosedOutsiders','InfoReverseEngineerable'] #pass

 yokana = ['BroughtTools','SecretsDisclosedOutsiders','InfoReverseEngineerable','DisclosureInPublicFo-

rum'] #pass

 cm1 = ['AgreedNotToDisclose','SecurityMeasures','InfoKnownToCompetitors','InfoIndependentlyGen-

erated','InfoReverseEngineerable','SecretsDisclosedOutsiders','DisclosureInPublicForum'] #pass

 digitalDevelopment = ['SecurityMeasures','CompetitiveAdvantage','UniqueProduct','IdenticalProd-

ucts','KnewInfoConfidential','DisclosureInNegotations'] #pass

 fmc = ['AgreedNotToDisclose','SecurityMeasures','BroughtTools','OutsiderDisclosuresRestricted','Se-

cretsDisclosedOutsiders','VerticalKnowledge'] #pass

 forrest = ['SecurityMeasures','UniqueProduct','KnewInfoConfidential','DisclosureInNegotations'] #pass

 goldberg = ['KnewInfoConfidential','DisclosureInNegotations','SecretsDisclosedOutsiders','Disclo-

sureInPublicForum'] #pass

 kg = ['SecurityMeasures','RestrictedMaterialsUsed','UniqueProduct','IdenticalProducts','KnewInfoConfi-

dential','InfoReverseEngineerable','InfoReverseEngineered'] #pass

 laser = ['SecurityMeasures','OutsiderDisclosuresRestricted','KnewInfoConfidential','DisclosureInNego-

tations','SecretsDisclosedOutsiders'] #pass

151

 lewis = ['CompetitiveAdvantage','KnewInfoConfidential','DisclosureInNegotations'] #pass

 mbl = ['AgreedNotToDisclose','SecurityMeasures','NoncompetitionAgreement','Agreement-

NotSpecific','SecretsDisclosedOutsiders','InfoKnownToCompetitors'] #pass

 mason = ['SecurityMeasures','UniqueProduct','KnewInfoConfidential','DisclosureInNegotations','In-

foReverseEngineerable'] #pass

 mineralDeposits = ['IdenticalProducts','RestrictedMaterialsUsed','DisclosureInNegotations','In-

foReverseEngineerable','InfoReverseEngineered'] #pass

 nationalInstruments = ['IdenticalProducts','KnewInfoConfidential','DisclosureInNegotations'] #pass

 nationalRejectors = ['BroughtTools','UniqueProduct','IdenticalProducts','SecretsDisclosedOutsiders','In-

foReverseEngineerable','NoSecurityMeasures','DisclosureInPublicForum'] #pass

 reinforced = ['AgreedNotToDisclose','SecurityMeasures','CompetitiveAdvantage','UniquePro-

duct','KnewInfoConfidential','DisclosureInNegotations'] #pass

 scientology = ['AgreedNotToDisclose','SecurityMeasures','OutsiderDisclosuresRestricted','SecretsDis-

closedOutsiders','VerticalKnowledge','InfoKnownToCompetitors'] #pass

 technicon = ['SecurityMeasures','OutsiderDisclosuresRestricted','RestrictedMaterialsUsed','KnewIn-

foConfidential','SecretsDisclosedOutsiders','InfoReverseEngineerable','InfoReverseEngineered'] #pass

 trandes = ['AgreedNotToDisclose','SecurityMeasures','OutsiderDisclosuresRestricted','DisclosureInNe-

gotations','SecretsDisclosedOutsiders'] #pass

 valcoCincinnati = ['SecurityMeasures','OutsiderDisclosuresRestricted','UniqueProduct','KnewInfoConfi-

dential','DisclosureInNegotations','SecretsDisclosedOutsiders'] #pass

 cases = {'Arco Industries Corp v Chemcast Corp':arco, 'The Boeing Company v Sierracin Corp':boe-

ing,'M. Bryce & Associates Inc v Gladstone':bryce, 'College Watercolour Group Inc v William H. New-

bauer':collegeWatercolour,'Den-Tal-Ez Inc v Siemens Capital Corp':denTalEz,'Ecol-

gix Inc v Fantsteel Inc':ecolgix,'A.H. Emery Co v Marcon Products Corp':emery,'Ferranti Elec-

tric Inc v Harwood':ferranti,'Commonwealth v Robinson':robinson,'Sandlin v John-

son':sandlin,'Sheets v Yamaha Motors Corp':sheets,'Space Aero Products Corp v R.E. Darling Corp':space-

Aero,'Televation Telecommunications Systems Inc v Saindon':televation,'Midland-

Ross Corp v Yokana':yokana,'CMI Corp v Jakob':cm1,'Digital Development Corp v Interna-

tional Memory Systems':digitalDevelopment,'FMC Corp v Taiwan Tainan Giant Ind Co Ltd':fmc,'For-

est Laboratories Inc v Formulations Inc':forrest,'Goldberg v Medtronic':goldberg,'K & G Oil Tool & Ser-

vices Co v G & G':kg,'Laser Industries Ltd v Eder Instrument Co':laser,'Computer Print Systems v Lew-

is':lewis,'MBL (USA) Corp v Diekman':mbl,'Mason v Jack Daniel Distillery':mason,'Mineral Depos-

its Ltd v Zigan':mineralDeposits,'National Instruments Labs Inc v Hycel Inc':nationalInstruments,'Na-

tional Rejectors Inc v Trieman':nationalRejectors,'Reinforced':reinforced,'Scientology':scientology, 'Tech-

nicon Data Systems Corp v Curtis':technicon,'Trandes Corp v Guy F. Atkinson Co':trandes,'Valco Cincin-

nati Inc v N & D Machining Service Inc':valcoCincinnati}

 return cases

def expectedOutcomeCases():

 """

 first factor is the outcome, the other factors are the same as in the prolog program

 """

 arco = ['no trade secret was misappropriated, find for defendant','LegitimatelyObtainable','Effort-

stoMaintainSecrecy','InfoKnownOrAvailiable','InfoKnown','InfoAvailiableElsewhere','InfoUsed', 'Se-

cretsDisclosedOutsiders', 'InfoReverseEngineerable','InfoKnownToCompetitors']

152

 boeing = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Effort-

stoMaintainSecrecy','InfoValuable','ImproperMeans','QuestionableMeans','InfoUsed','ConfidentialRela-

tionship','NoticeOfConfidentiality','ConfidentialityAgreement','MaintainSecrecyDefendant','MaintainSe-

crecyOutsiders', 'AgreedNotToDisclose','SecurityMeasures','OutsiderDisclosuresRestricted','RestrictedMa-

terialsUsed','KnewInfoConfidential','DisclosureInNegotations','SecretsDisclosedOutsiders']

 bryce = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Effort-

stoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality','Confi-

dentialityAgreement','MaintainSecrecyDefendant', 'AgreedNotToDisclose','SecurityMeasures','Identi-

calProducts','KnewInfoConfidential','DisclosureInNegotations']

 collegeWatercolour = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropria-

tion','EffortstoMaintainSecrecy','InfoValuable','ImproperMeans','QuestionableMeans','InfoUsed', 'Unique-

Product','Deception','DisclosureInNegotations']

 denTalEz = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Effort-

stoMaintainSecrecy','InfoValuable','ImproperMeans','QuestionableMeans','InfoUsed','ConfidentialRela-

tionship','NoticeOfConfidentiality','ConfidentialityAgreement','MaintainSecrecyDefendant', 'AgreedNot-

ToDisclose','SecurityMeasures','KnewInfoConfidential','Deception','DisclosureInNegotations']

 ecolgix = ['no trade secret was misappropriated, find for defendant','InfoValuable','InfoUsed','Confiden-

tialRelationship','NoticeOfConfidentiality', 'KnewInfoConfidential','DisclosureInNegotations','NoSecuri-

tyMeasures','WaiverOfConfidentiality']

 emery = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Effort-

stoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality', 'Identi-

calProducts','KnewInfoConfidential','SecretsDisclosedOutsiders']

 ferranti = ['no trade secret was misappropriated, find for defendant','LegitimatelyObtainable','InfoK-

nownOrAvailiable','InfoKnown', 'BribeEmployee','InfoIndependentlyGenerated','NoSecurityMeasures','In-

foKnownToCompetitors','DisclosureInPublicForum']

 robinson = ['no trade secret was misappropriated, find for defendant','InfoValuable','ImproperMe-

ans','QuestionableMeans','InfoUsed','IdenticalProducts','Deception','DisclosureInNegotations','SecretsDis-

closedOutsiders','NoSecurityMeasures']

 sandlin = ['no trade secret was misappropriated, find for defendant','LegitimatelyObtainable','InfoK-

nownOrAvailiable','InfoAvailiableElsewhere','InfoUsed','DisclosureInNegotations','SecretsDisclosedOut-

siders','InfoReverseEngineerable','NoSecurityMeasures','DisclosureInPublicForum']

 sheets = ['no trade secret was misappropriated, find for defendant','InfoValuable','InfoUsed', 'Identi-

calProducts','NoSecurityMeasures','DisclosureInPublicForum']

 spaceAero = ['no trade secret was misappropriated, find for defendant','InfoValuable','InfoUsed', 'Com-

petitiveAdvantage','UniqueProduct','IdenticalProducts','DisclosureInNegotations','NoSecurityMeasures']

 televation = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Ef-

fortstoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiali-

ty','MaintainSecrecyOutsiders', 'SecurityMeasures','OutsiderDisclosuresRestricted','UniqueProduct','Identi-

calProducts','KnewInfoConfidential','SecretsDisclosedOutsiders','InfoReverseEngineerable']

 yokana = ['no trade secret was misappropriated, find for defendant','LegitimatelyObtainable','Effort-

stoMaintainSecrecy','InfoKnownOrAvailiable','InfoAvailiableElsewhere','InfoUsed', 'BroughtTools','Se-

cretsDisclosedOutsiders','InfoReverseEngineerable','DisclosureInPublicForum']

 cm1 = ['no trade secret was misappropriated, find for defendant','LegitimatelyObtainable','Effort-

stoMaintainSecrecy','InfoKnownOrAvailiable','InfoKnown','InfoAvailiableElsewhere','ConfidentialRela-

tionship','NoticeOfConfidentiality','ConfidentialityAgreement','MaintainSecrecyDefendant', 'AgreedNot-

ToDisclose','SecurityMeasures','InfoKnownToCompetitors','InfoIndependentlyGenerated','In-

foReverseEngineerable','SecretsDisclosedOutsiders','DisclosureInPublicForum']

153

 digitalDevelopment = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropria-

tion','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidenti-

ality', 'SecurityMeasures','CompetitiveAdvantage','UniqueProduct','IdenticalProducts','KnewInfoConfiden-

tial','DisclosureInNegotations']

 fmc = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Effort-

stoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality','Confi-

dentialityAgreement','MaintainSecrecyDefendant','MaintainSecrecyOutsiders','AgreedNotToDisclose','Se-

curityMeasures','BroughtTools','OutsiderDisclosuresRestricted','SecretsDisclosedOutsiders','VerticalK-

nowledge']

 forrest = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Effort-

stoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality', 'Securi-

tyMeasures','UniqueProduct','KnewInfoConfidential','DisclosureInNegotations']

 goldberg = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Effort-

stoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiali-

ty', 'KnewInfoConfidential','DisclosureInNegotations','SecretsDisclosedOutsiders','DisclosureInPublicFo-

rum']

 kg = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Effort-

stoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality', 'Securi-

tyMeasures','RestrictedMaterialsUsed','UniqueProduct','IdenticalProducts','KnewInfoConfidential','In-

foReverseEngineerable','InfoReverseEngineered']

 laser = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Effort-

stoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality','Main-

tainSecrecyOutsiders', 'SecurityMeasures','OutsiderDisclosuresRestricted','KnewInfoConfidential','Disclo-

sureInNegotations','SecretsDisclosedOutsiders']

 lewis = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Effort-

stoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality', 'Com-

petitiveAdvantage','KnewInfoConfidential','DisclosureInNegotations']

 mbl = ['no trade secret was misappropriated, find for defendant','LegitimatelyObtainable','EffortstoMain-

tainSecrecy','InfoKnownOrAvailiable','InfoKnown','InfoUsed','ConfidentialRelationship','NoticeOfConfi-

dentiality','ConfidentialityAgreement','MaintainSecrecyDefendant', 'AgreedNotToDisclose','Securi-

tyMeasures','NoncompetitionAgreement','AgreementNotSpecific','SecretsDisclosedOutsiders','InfoKnown-

ToCompetitors']

 mason = ['no trade secret was misappropriated, find for defendant','LegitimatelyObtainable','Effort-

stoMaintainSecrecy','InfoValuable','InfoKnownOrAvailiable','InfoAvailiableElsewhere','InfoUsed','Confi-

dentialRelationship','NoticeOfConfidentiality', 'SecurityMeasures','UniqueProduct','KnewInfoConfiden-

tial','DisclosureInNegotations','InfoReverseEngineerable']

 mineralDeposits = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropria-

tion','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidenti-

ality', 'IdenticalProducts','RestrictedMaterialsUsed','DisclosureInNegotations','InfoReverseEngineera-

ble','InfoReverseEngineered']

 nationalInstruments = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropria-

tion','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidenti-

ality', 'IdenticalProducts','KnewInfoConfidential','DisclosureInNegotations']

 nationalRejectors = ['no trade secret was misappropriated, find for defendant','InfoValuable','In-

foUsed', 'BroughtTools','UniqueProduct','IdenticalProducts','SecretsDisclosedOutsiders','InfoReverseEngi-

neerable','NoSecurityMeasures','DisclosureInPublicForum']

154

 reinforced = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Ef-

fortstoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiali-

ty','ConfidentialityAgreement','MaintainSecrecyDefendant', 'AgreedNotToDisclose','Securi-

tyMeasures','CompetitiveAdvantage','UniqueProduct','KnewInfoConfidential','DisclosureInNegotations']

 scientology = ['no trade secret was misappropriated, find for defendant','LegitimatelyObtainable','Effort-

stoMaintainSecrecy','InfoKnownOrAvailiable','InfoKnown','InfoUsed','ConfidentialRelationship','No-

ticeOfConfidentiality','ConfidentialityAgreement','MaintainSecrecyDefendant','MaintainSecrecyOutsid-

ers', 'AgreedNotToDisclose','SecurityMeasures','OutsiderDisclosuresRestricted','SecretsDisclosedOutsid-

ers','VerticalKnowledge','InfoKnownToCompetitors']

 technicon = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Ef-

fortstoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiali-

ty','MaintainSecrecyOutsiders', 'SecurityMeasures','OutsiderDisclosuresRestricted','RestrictedMateri-

alsUsed','KnewInfoConfidential','SecretsDisclosedOutsiders','InfoReverseEngineerable','InfoReverseEngi-

neered']

 trandes = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropriation','Effort-

stoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidentiality','Confi-

dentialityAgreement','MaintainSecrecyDefendant','MaintainSecrecyOutsiders', 'AgreedNotToDisclose','Se-

curityMeasures','OutsiderDisclosuresRestricted','DisclosureInNegotations','SecretsDisclosedOutsiders']

 valcoCincinnati = ['a trade secret was misappropriated, find for plaintiff','TradeSecretMisappropria-

tion','EffortstoMaintainSecrecy','InfoValuable','InfoUsed','ConfidentialRelationship','NoticeOfConfidenti-

ality','MaintainSecrecyOutsiders', 'SecurityMeasures','OutsiderDisclosuresRestricted','UniquePro-

duct','KnewInfoConfidential','DisclosureInNegotations','SecretsDisclosedOutsiders']

 cases = {'Arco Industries Corp v Chemcast Corp':arco, 'The Boeing Company v Sierracin Corp':boe-

ing,'M. Bryce & Associates Inc v Gladstone':bryce, 'College Watercolour Group Inc v William H. New-

bauer':collegeWatercolour,'Den-Tal-Ez Inc v Siemens Capital Corp':denTalEz,'Ecol-

gix Inc v Fantsteel Inc':ecolgix,'A.H. Emery Co v Marcon Products Corp':emery,'Ferranti Elec-

tric Inc v Harwood':ferranti,'Commonwealth v Robinson':robinson,'Sandlin v John-

son':sandlin,'Sheets v Yamaha Motors Corp':sheets,'Space Aero Products Corp v R.E. Darling Corp':space-

Aero,'Televation Telecommunications Systems Inc v Saindon':televation,'Midland-

Ross Corp v Yokana':yokana,'CMI Corp v Jakob':cm1,'Digital Development Corp v Interna-

tional Memory Systems':digitalDevelopment,'FMC Corp v Taiwan Tainan Giant Ind Co Ltd':fmc,'For-

est Laboratories Inc v Formulations Inc':forrest,'Goldberg v Medtronic':goldberg,'K & G Oil Tool & Ser-

vices Co v G & G':kg,'Laser Industries Ltd v Eder Instrument Co':laser,'Computer Print Systems v Lew-

is':lewis,'MBL (USA) Corp v Diekman':mbl,'Mason v Jack Daniel Distillery':mason,'Mineral Depos-

its Ltd v Zigan':mineralDeposits,'National Instruments Labs Inc v Hycel Inc':nationalInstruments,'Na-

tional Rejectors Inc v Trieman':nationalRejectors,'Reinforced':reinforced,'Scientology':scientology, 'Tech-

nicon Data Systems Corp v Curtis':technicon,'Trandes Corp v Guy F. Atkinson Co':trandes,'Valco Cincin-

nati Inc v N & D Machining Service Inc':valcoCincinnati}

 return cases

H.6 FourthAmendment.py

155

This file initialises the Fourth Amendment domain. adf() adds the node data to the ADF.

cases() contains the base-level factors for each case in the test dataset. expectedOutcome()

contains the expected outcome data for the test dataset.

from MainClasses import *

def adf():

 """

 creates the ADF for the domain

 """

 adf = ADF('FourthAmendment')

 #non leaf

 adf.addNodes('Decide',['Privacy','Exigency'],['warantless search violates the fourth amendment','warant-

less search did not violate the fourth amendment','wrong decision'])

 adf.addNodes('Privacy',['ExpectationOfPrivacyInUse and (not SubjectToInspectionRegula-

tion or not VisibilityOfItem)','not PublicParking and not_authorised','OnlyVehicleContainer and not Visi-

bilityOfItem'],['high expectation of privacy not justified under automobile exception','high expecta-

tion of privacy obtained warrant was issued by neutral and detached magustrate and not autorized','pri-

vacy is not justified under automobile exception','reduced expectation of privacy'])

 adf.addNodes('Exigency',['(Mobile and ExigencyWhenApproached and ProbableCauseToSearchVehi-

cle)', 'reject EaseWarrant'],['justified under automobile exception cite carroll v us','reduce expecta-

tion of exigency','reduce expectation of exigency'])

 adf.addNodes('ExpectationOfPrivacyInUse',['(Accomodation and Residence) or PrivateContentsCar-

riage'],['there is a high expectation of privacy in use','default low expectation of privacy in use'])

 adf.addNodes('Residence',['ConnectedServices'],['connected to one or more main living services','de-

fault not connected to one or more main living services'])

 adf.addNodes('PrivateContentsCarriage',['ProtectionType and GoodsCarried','reject GoodsCarried'],['pri-

vate contents','private contents but not protected','default contents are not considered private'])

 adf.addNodes('Accomodation',['AccomodationSpaces or RoomsFunction'],['the place was used for acco-

modation','default the place was used for accomodation'])

 adf.addNodes('SubjectToInspectionRegulation',['reject Licence and RestrictedArea','Licence'],['sub-

ject to regular inspection but the search was allocated at restricted area','subject to regular inspec-

tion','it is not subject to regular inspection'])

 adf.addNodes('VisibilityOfItem',['OnPublicView or CanBeSeen'],['item is visible to public','de-

fault it is not visible to public'])

 adf.addNodes('ExigencyWhenApproached',['UrgentStatus or (CapableToMove and (PublicPark-

ing or PublicLocation))'],['there was exigency when approached','there was no exigency when ap-

proached'])

 adf.addNodes('Mobile',['Automobile or Vessel or Towable or LargeContainer or MovableContain-

er'],['it is a mobile','default it is not a mobile'])

 adf.addNodes('EaseWarrant',['not RiskofLosingEvidence or (AvailiabilityofMagistrate and Authori-

tyOfAvailiableMagistrate) '],['it is easy to obtain a warrant','it is not easy to obain a warrant'])

 adf.addNodes('ProbableCauseToSearchVehicle',['LegalSearchScope and UrgentReason-

ToSearch and AuthorizedOriginOfProbableCause','reject UrgentReasonToSearch and AuthorizedOrigi-

156

nOfProbableCause'],['there is a probable cause to search the vehicle','there is a proba-

ble cause to search the vehicle but the search scope was illegal','default there is no proba-

ble cause to search the vehicle'])

 adf.addNodes('AuthorizedOriginOfProbableCause',['Information or Observation or Procedure','not Infor-

mation'],['there was an authorized origin of probable cause','default origin of probable cause is not author-

ized or not clarified',' '])

 adf.addNodes('UrgentReasonToSearch',['PublicSafety or Crime'],['the main reason to search was ur-

gent','default the main reason to immediate search is not clarified'])

 adf.addNodes('LegalSearchScope',['WholeVehicle','reject OnlyVehicleContainer and Search-

Place'],['the search scope is legal','the search scope is illegal','default the serach scope is illegal'])

 #blf

 adf.addMulti('Automobile',['car','mobile_home'],['it is a vehicle cite carroll v us','it is a mobile home ve-

hicle cite carney v california','default it is not an automobile cite carroll v us'],'If the vehi-

cle that was searched was an automobile select the correct type:')

 adf.addMulti('Vessel',['not Automobile and vessel','not Automobile and sailboat','not Automo-

bile and rowboat'],['motorboat is a vessel cite carroll v us','sailboat is a vessel cite carroll v us','row-

boat is a vessel cite carroll v us','default it is not a vessel cite carroll v us'],'If the vehi-

cle that was searched was a vessel select the correct type:')

 adf.addMulti('Towable',['trailer','wagon','cart'],['trailer is towable cite carroll v us','wagon is towa-

ble cite carroll v us','cart is towable cite carroll v us','default it is not towable cite carroll v us'],'If the vehi-

cle that was searched was towable select the correct type:')

 adf.addMulti('LargeContainer',['not Vessel and foot_locker','not Vessel and goods_container'],['foot-

locker is a large container cite us v chadwick','large goods container','default no large contain-

ers'],'If a large container was searched select the correct type')

 adf.addMulti('MovableContainer',['pouch','paper_bag','briefcase','suitcase'],['pouch is a movable contain-

er','paper bag is a movable container','brief case is a movable container','suitcase is a movable contain-

er','default it is not a movable container'],'If a movable container was searched select the correct type')

 adf.addMulti('AuthorityOfAvailiableMagistrate',['authorised','reject not_authorised'],['neutral and de-

tached authorized magistrate are availiabe cite johnson v us','warrant issued by unauthorized magis-

trate cite johnson v us','default authorized magistrate are not availiable'],'Is an authorised magistrate availi-

able?')

 adf.addNodes('RiskofLosingEvidence',['ExigencyWhenApproached','re-

ject near_court'],['there is risk to lose evidence','there was no risk to lose evidence','de-

fault there was no risk to lose evidence'])

 adf.addNodes('near_court',question='Was there a risk of losing evidence?')

 adf.addMulti('AvailiabilityofMagistrate',['working_time','reject overnight'],['magistrate availiabe dur-

ing working hours','magistrate are not availiable overnight','default magistrate are not availia-

ble'],'What is the availiability, if any, of the magistrate?')

 adf.addMulti('Licence',['vehicle','motorhome','Automobile'],['has a vehicle licence','has a special mo-

torhome licence','default all automobiles are registered','no automobile'],'What type of vehicle li-

cence, if any, was held?')

 adf.addMulti('RestrictedArea',['airport','home','police_station'],['airport is a restricted area','pri-

vate home is a restricted area','police station is a restricted area','default not restricted ar-

ea'],'Did the search take place in a restricted area?')

 adf.addNodes('OnPublicView',['OnSeat'],['items were on the seat it is on public view','de-

fault item is not on public view or details are not provided'])

 adf.addNodes('OnSeat',question="Where the items on the seat in public view?")

157

 adf.addMulti('CanBeSeen',['not OnPublicView and public_view','not On-

PublicView and on_floor'],['items can be seen by public','items were no floor it can be seen by public','de-

fault can not be seen by public or details are not provid-

ed'],'Were the items on the floor or in a place that could be seen by the public?')

 adf.addMulti('CannotBeSeen',['not CanBeSeen and opaque_container','not CanBeSeen and glove-

box','not CanBeSeen and boot'],['items were in an opaque container it can not be seen by pub-

lic','items were inside the glove box it can not be seen by public','items were in-

side the boot it can be not seen by public','de-

fault it is not clear that items can not be seen'],'Were the items not viewable to the public in one of the fol-

lowing?')

 adf.addMulti('UrgentStatus',['Mobile and moving','reject Mobile and stationary','reject Mo-

bile and parked','reject Mobile and crashed'],['there was an urgent status when vehicle is moving cite car-

roll v us','there was no urgent status automobile found stationary','there was no urgent status automo-

bile was parked','there was no urgent status automobile was crashed','default there is no urgent sta-

tus'],'Was the vehicle any of the following:')

 adf.addMulti('CapableToMove',['Mobile and not UrgentStatus and (driver_in or occupied or cur-

tains_open or motive_force)', 'Mobile and not moving and not (driver_in or occupied or cur-

tains_open or motive_force)'],['the vehicle is capable to move','default the vehicle is capa-

ble to move',' '],'Was the vehicle capable to move for any of the following reasons?')

 adf.addMulti('PublicParking',['(UrgentStatus or CapableToMove) and (parked_on_highway or (park-

ing_lot and not dwelling))','reject (UrgentStatus or CapableToMove) and (dwelling or ((own-

land or work or rented_land) and not parking_lot))','reject (UrgentStatus or CapableToMove) and Ur-

gentStatus'],['the vehicle was parked in public parking','the vehicle was parked in private parking','de-

fault vehicle was not parked','default vehicle parking type is not specified'],'Where was the vehi-

cle parked, if anywhere?')

 adf.addMulti('PublicLocation',['(UrgentStatus or CapableToMove) and (highway or downtown)','re-

ject (UrgentStatus or CapableToMove) and (dwelling or urban_residential or suburban or ru-

ral)'],['the vehicle was in public location','the vehicle was in private location','default vehicle loca-

tion is not specified'],'In what location was the vehicle?')

 adf.addMulti('PermittedDuration',['short_stay','overnight','long_stay'],['the vehi-

cle was parked for a short time','the vehicle was parked for one overnight','the vehi-

cle was parked for over one night long period','default the vehicle was parked for unknown peri-

od'],'For how long was the vehicle parked?')

 adf.addMulti('Information',['public_informant','agent_officer'],['received information from public inform-

ant','received information from agent officer','default the original probable cause is not by information re-

ceived'],'Did the original probable cause come from information received from:')

 adf.addMulti('Observation',['not Information and the_public','not Information and an_agent_of-

ficer'],['observed from public observer','observed from agent officer','default the original proba-

ble cause is not by observation'],'Was the original probable cause observed from:')

 adf.addMulti('Procedure',['not Observation and incident_to_arrest','not Observation and multi-

ple_parking','not Observation and inspection_regulation'],['search incident to arrest cite harris v us and pre-

seton v us','multiple parking procedure','inspection procedure cite harris v us and preston v us','de-

fault the original probable cause is not a procedure or procedure is not clarified'],'Was the original proba-

ble cause a procedure such as:')

 adf.addMulti('PublicSafety',['weapon and illegal_substance','weapon','illegal_sub-

stance','not weapon or not illegal_substance'],['main reason to search was to protect the public','main rea-

158

son to search was to protect the public cite harris v us and preston v us','main reason to search was to pro-

tect the public cite carol v us','default main reason to search was to protect the public','main rea-

son to search was not to protect the public'],'Was the main reason to search due to:')

 adf.addMulti('Crime',['smuggling or dealing or murder','robbery'],['main rea-

son to search was due to a crime','main reason to search was not due to a crime','default main rea-

son to search was not due to a crime'],'Had any of these crimes preempted the search?')

 adf.addNodes('WholeVehicle',['all_parts'],['all vehicle parts have been searched cite car-

rol v us and us v ross','default it is not clear if all vehicle parts have been searched'])

 adf.addNodes('all_parts',question='Have all the vehicle parts been searched?')

 adf.addMulti('OnlyVehicleContainer',['not WholeVehicle and (car_trunk and glove_compart-

ment)','not WholeVehicle and car_trunk','not WholeVehicle and glove_compartment'],['only vehicle con-

tainers have been searched','only vehicle containers have been searched cite us v chadwick and arkan-

sas v sanders','only vehicle containers have been searched','default it is not clear which part of vehi-

cle is searched'],'Were any of the following parts of the vehicle searched?')

 adf.addMulti('SearchPlace',['police_station_location and automobile_location','reject police_station_loca-

tion','reject garage','automobile_location'],['the vehicle was searched twice at the same automobile loca-

tion and at police station','the vehicle was searched at police station','the vehicle was searched at a gar-

age','the vehicle was searched at the same automobile location','default the vehicle searching loca-

tion is not clarified'],'Where was the vehicle searched?')

 adf.addMulti('GoodsCarried',['personal_effects or papers or commercial_items','reject weapons or ille-

gal_substance','money'],['private goods','illegal goods','private goods','default goods carried are un-

known'],'Which, if any, of these goods were being carried?')

 adf.addMulti('ProtectionType',['reject open','reject closed','locked','double_locked'],['not protect-

ed','just closed but not protected','locked and protected','double locked and protected','default protec-

tion level can not be determined'],'What was the protection level of the goods?')

 adf.addMulti('ConnectedServices',['gas and water','electricity and water','gas','electrici-

ty','water'],['gas and water services were connected','electricity and water services were connected','gas ser-

vice was connected','electricity service was connected','water service was connected','default none of liv-

ing main services are specified'],'Were any of the following services connected?')

 adf.addMulti('AccomodationSpaces',['cab and suitable_accomodation_space','reject cab','suitable_acco-

modation_space'],['consists of a cab and suitable accomodation space','consists of a cab only','con-

sists of suitable accomodation space','default vehicle accomodation spaces are not clarified'],'Does the ve-

hicle accomodation consist of:')

 adf.addMulti('RoomsFunction',['not AccomodationSpaces and (bedroom or bathroom or kitchen or liv-

ing_room)'],['essential room for accomodation','default there are no rooms or rooms function is not speci-

fied'],'Are there any rooms in the accomodation space?')

 #set to stop the program prompting it be set as a question but excluded from the question order

 adf.addNodes('not_authorised',question='<>')

 adf.questionOrder = ['Automobile','Vessel','Towable','LargeContainer','MovableContainer','Authori-

tyOfAvailiableMagistrate','near_court','AvailiabilityofMagistrate','Licence','RestrictedArea','On-

Seat','CanBeSeen','CannotBeSeen','UrgentStatus','CapableToMove','PublicParking','PublicLocation','Per-

mittedDuration','Information','Observation','Procedure','PublicSafety','Crime','all_parts','OnlyVehicleCon-

tainer','SearchPlace','GoodsCarried','ProtectionType','ConnectedServices','Accomoda-

tionSpaces','RoomsFunction']

 return adf

159

def cases():

 """

 test cases

 """

 cvus = ['car','moving','public_informant','illegal_substance','all_parts','automobile_location','illegal_sub-

stance'] #pass

 cvm = ['car','ft015w','moving','highway','inspection_regulation','robbery','all_parts'] #pass

 cvnh = ['car','not_authorised','parked','dwelling','dwelling','inspection_regulation','mur-

der','all_parts'] #can't tell

 cvd = ['car','public_view','boot','crashed','parked_on_highway','dwelling','inspection_regulation','mur-

der','all_parts','garage'] #pass

 sdvo = ['car','paper_bag','glovebox','parked','parking_lot','multiple_parking','illegal_sub-

stance','all_parts','automobile_location','illegal_substance'] #pass

 usvc = ['car','foot_locker','police_station','boot','parked','parking_lot','public_informant','illegal_sub-

stance','car_trunk','police_station_location','illegal_substance','double_locked'] #pass

 avs = ['car','goods_container','suitcase','airport','boot','moving','agent_officer','illegal_sub-

stance','car_trunk','illegal_substance','closed'] #pass

 usvr = ['car','paper_bag','police_station','parked','parking_lot','public_informant','illegal_sub-

stance','all_parts','car_trunk','automobile_location','police_station_location','illegal_substance','mon-

ey','closed'] #pass

 cvc = ['mobile_home','paper_bag','near_court','motorhome','police_station','parked','driver_in','park-

ing_lot','downtown','public_informant','the_public','illegal_substance','all_parts','police_station_loca-

tion','automobile_location','illegal_substance','closed','cab','suitable_accomodation_space','bedroom','kitch-

en'] #pass

 cva = ['car','paper_bag','police_station','boot','moving','highway','public_informant','illegal_sub-

stance','car_trunk','automobile_location','illegal_substance','closed'] #pass

 cases = {'Carroll v United States':cvus,'Chambers v Maroneys':cvm,'Cady v Dombrowski':cvd,'South Da-

kota v Opperman':sdvo,'United States v Chadwick':usvc,'Arkansas v Sand-

ers':avs,'United States v Ross':usvr,'California v Carney':cvc,'California v Acevedo': cva}#,'Coo-

lidge v New Hampshire':cvnh}

 return cases

def expectedOutcomeCases():

 """

 first factor is the outcome - the other factors are those from the prolog program of the domain

 """

 cvus = ['warantless search did not violate the fourth amendment','car','moving','public_informant','ille-

gal_substance','all_parts','automobile_location','illegal_substance','Exigency','RiskofLosingEvidence','Sub-

jectToInspectionRegulation','Licence','ProbableCauseToSearchVehicle','LegalSearchScope','Search-

Place','WholeVehicle','UrgentReasonToSearch','PublicSafety','AuthorizedOriginOfProbableCause','Infor-

mation','ExigencyWhenApproached','UrgentStatus','Mobile','Automobile'] #pass

160

 cvm = ['warantless search did not violate the fourth amendment','car','ft015w','moving','highway','inspec-

tion_regulation','robbery','all_parts','RiskofLosingEvidence','SubjectToInspectionRegulation','Li-

cence','ProbableCauseToSearchVehicle','LegalSearchScope','WholeVehicle','UrgentReason-

ToSearch','Crime','PublicSafety','AuthorizedOriginOfProbableCause','Procedure','ExigencyWhenAp-

proached','PublicLocation','UrgentStatus','Mobile','Automobile','Exigency'] #pass

 cvd = ['warantless search did not violate the fourth amendment','car','pub-

lic_view','boot','crashed','parked_on_highway','dwelling','inspection_regulation','murder','all_parts','gar-

age','RiskofLosingEvidence','VisibilityOfItem','CanBeSeen','SubjectToInspectionRegulation','Li-

cence','ProbableCauseToSearchVehicle','LegalSearchScope','WholeVehicle','UrgentReason-

ToSearch','Crime','PublicSafety','AuthorizedOriginOfProbableCause','Procedure','ExigencyWhenAp-

proached','PublicParking','CapableToMove','Mobile','Automobile','Exigency'] #pass

 sdvo = ['warantless search did not violate the fourth amendment','car','paper_bag','glove-

box','parked','parking_lot','multiple_parking','illegal_substance','all_parts','automobile_location','ille-

gal_substance','RiskofLosingEvidence','CannotBeSeen','SubjectToInspectionRegulation','Licence','Proba-

bleCauseToSearchVehicle','LegalSearchScope','SearchPlace','WholeVehicle','UrgentReason-

ToSearch','PublicSafety','AuthorizedOriginOfProbableCause','Procedure','ExigencyWhenAp-

proached','PublicParking','CapableToMove','Mobile','MovableContainer','Automobile','Exigency'] #pass

 usvc = ['warantless search violates the fourth amendment','car','foot_locker','police_sta-

tion','boot','parked','parking_lot','public_informant','illegal_substance','car_trunk','police_station_loca-

tion','illegal_substance','double_locked','RiskofLosingEvidence','ProtectionType','CannotBeSeen','Re-

strictedArea','Licence','OnlyVehicleContainer','UrgentReasonToSearch','PublicSafety','AuthorizedOrigi-

nOfProbableCause','Information','ExigencyWhenApproached','PublicParking','CapableToMove','Mo-

bile','LargeContainer','Automobile','Privacy'] #pass

 avs = ['warantless search violates the fourth amendment','car','goods_container','suitcase','air-

port','boot','moving','agent_officer','illegal_substance','car_trunk','illegal_sub-

stance','closed','RiskofLosingEvidence','CannotBeSeen','RestrictedArea','Licence','OnlyVehicleContain-

er','UrgentReasonToSearch','PublicSafety','AuthorizedOriginOfProbableCause','Information','Exigency-

WhenApproached','UrgentStatus','Mobile','MovableContainer','LargeContainer','Automobile','Priva-

cy'] #pass

 usvr = ['warantless search did not violate the fourth amendment','car','paper_bag','police_sta-

tion','parked','parking_lot','public_informant','illegal_substance','all_parts','car_trunk','automobile_loca-

tion','police_station_location','illegal_substance','money','closed','RiskofLosingEvidence','Re-

strictedArea','Licence','ProbableCauseToSearchVehicle','LegalSearchScope','SearchPlace','WholeVehi-

cle','UrgentReasonToSearch','PublicSafety','AuthorizedOriginOfProbableCause','Information','Exigency-

WhenApproached','PublicParking','CapableToMove','Mobile','MovableContainer','Automobile','Exigen-

cy'] #pass

 cvc = ['warantless search did not violate the fourth amendment','mobile_home','pa-

per_bag','near_court','motorhome','police_station','parked','driver_in','parking_lot','downtown','public_in-

formant','the_public','illegal_substance','all_parts','police_station_location','automobile_location','ille-

gal_substance','closed','cab','suitable_accomodation_space','bedroom','kitchen','RiskofLosingEvidence','Ac-

comodation','AccomodationSpaces','RestrictedArea','Licence','ProbableCauseToSearchVehicle','Le-

galSearchScope','SearchPlace','WholeVehicle','UrgentReasonToSearch','PublicSafety','AuthorizedOrigi-

nOfProbableCause','Information','ExigencyWhenApproached','PublicParking','PublicLocation','Capa-

bleToMove','Mobile','MovableContainer','Automobile','Exigency'] #pass

 cva = ['warantless search violates the fourth amendment','car','paper_bag','police_station','boot','mov-

ing','highway','public_informant','illegal_substance','car_trunk','automobile_location','illegal_sub-

stance','closed','RiskofLosingEvidence','CannotBeSeen','RestrictedArea','Licence','SearchPlace','OnlyVehi-

161

cleContainer','UrgentReasonToSearch','PublicSafety','AuthorizedOriginOfProbableCause','Infor-

mation','ExigencyWhenApproached','PublicLocation','UrgentStatus','Mobile','MovableContainer','Automo-

bile','Privacy'] #pass

 #prolog for this case is not fully functional so cannot obtain an accurate expected list

 #cvnh = ['warantless search violates the fourth amendment','car','not_authorised','parked','dwell-

ing','dwelling','inspection_regulation','murder','all_parts']

 cases = {'Carroll v United States':cvus,'Chambers v Maroneys':cvm,'Cady v Dombrowski':cvd,'South Da-

kota v Opperman':sdvo,'United States v Chadwick':usvc,'Arkansas v Sand-

ers':avs,'United States v Ross':usvr,'California v Carney':cvc,'California v Acevedo': cva}#,'Coo-

lidge v New Hampshire':cvnh}

 return cases

H.7 test_data.py

Running this file initialises the unit tests as described in section 5.2.

import unittest

from MainClasses import *

import WildAnimals

import TradeSecrets

import FourthAmendment

#excluded due to data privacy concerns

#import NIHL

class Tests(unittest.TestCase):

 def test_wild_animals(self):

 adf = WildAnimals.adf()

 expOutcome = WildAnimals.expectedOutcomeCases()

 cases = WildAnimals.cases()

 self.query_adf(adf,expOutcome,cases)

 adf = WildAnimals.adf()

 expOutcome = WildAnimals.expectedOutcomeCases()

 cases = WildAnimals.cases()

 self.save_import(adf,"TestWildAnimals",cases,expOutcome)

162

 def test_trade_secrets(self):

 adf = TradeSecrets.adf()

 expOutcome = TradeSecrets.expectedOutcomeCases()

 cases = TradeSecrets.cases()

 self.query_adf(adf,expOutcome,cases)

 adf = TradeSecrets.adf()

 expOutcome = TradeSecrets.expectedOutcomeCases()

 cases = TradeSecrets.cases()

 self.save_import(adf,"TestTradeSecrets",cases,expOutcome)

 def test_fourth_amendment(self):

 adf = FourthAmendment.adf()

 expOutcome = FourthAmendment.expectedOutcomeCases()

 cases = FourthAmendment.cases()

 self.query_adf(adf,expOutcome,cases)

 adf = FourthAmendment.adf()

 expOutcome = FourthAmendment.expectedOutcomeCases()

 cases = FourthAmendment.cases()

 self.save_import(adf,"TestFourthAmendment",cases,expOutcome)

 # def test_NIHL(self):

 # adf = NIHL.adf()

 # expOutcome = NIHL.expectedOutcomeCases()

 # cases = NIHL.cases()

 # self.query_adf(adf,expOutcome,cases)

 # adf = NIHL.adf()

 # expOutcome = NIHL.expectedOutcomeCases()

 # cases = NIHL.cases()

 # self.save_import(adf,"TestNIHL",cases,expOutcome)

 def save_import(self,adf,filename,cases,expOutcome):

 #keeps track of the old adf for comparison

 adf_old = adf

 adf.saveNew('{}'.format(filename))

163

 file = "{}.xlsx".format(filename)

 adf_new = importADF(file,filename)

 #test nodes have the same name after import and that they are all present

 self.assertEqual(adf_old.nodes.keys(),adf_new.nodes.keys())

 #test the question order is the same in each

 self.assertEqual(adf_old.questionOrder, adf_new.questionOrder)

 #tests that the expected outcomes after the save/import are correct

 self.query_adf(adf_new,expOutcome,cases)

 def query_adf(self,adf,expectedOutcome,cases):

 for key,value in cases.items():

 #queries the case

 adf.evaluateTree(value)

 #removes the decide node from the outcome as not in the prolog

 try:

 adf.case.remove('Decide')

 except:

 pass

 #finds the expected outcome in the list of cases

 outcome = expectedOutcome[key]

 #removes the first item in the list which is a string of the expected outcome decision

 outcomeStatement = outcome.pop(0)

 #tests the outcomes are the same

 self.assertEqual(outcomeStatement,adf.statements[-1])

 #tests the individual fators are the same - converts each list into a set since order does not mat-

ter only equality

 self.assertEqual(set(adf.case),set(expectedOutcome[key]))

if __name__== '__main__':

 unittest.main()

