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Abstract

This work aims to assess the feasibility of applying data science and artificial intelli-

gence methods to the problem of case outcome prediction for appeals from the Euro-

pean Patent Office’s Boards of Appeal, concerning the grant of a patent application.

The task is conceptualised as a binary classification task in which an appeal can ‘af-

firm’ or ‘reverse’ the prior judgement. Using a range of machine learning classifiers

and textual representations, including custom-trained word and document embed-

dings, two experiments were conducted on appeal cases from the Examining Division

of the European Patent Office. The first using randomly-sampled data and the second

with year-stratified data to engage in future prediction. The first experiment achieved

85% accuracy and the second an average of 86%. The results demonstrate the viabil-

ity of applying machine learning techniques to appeals concerning the patent grant

procedure, showing that patents as a legal domain may be promising for future case

outcome prediction research.
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1 | Introduction

In this chapter, I will be introducing the choice of domain for this work as well as

outlining the main aims and objectives to be realised.

1.1 Overview

The task of case outcome prediction is the branch of Artificial Intelligence (AI) and

Law referring to automatically predicting the outcome of a court decision given some

input relevant to the case. Most work focuses on the European Court of Human

Rights [1, 2], the Supreme Court of the United States [3, 4] and the Chinese Legal

System [5, 6]. Comparatively, little research has been performed in case outcome

prediction for the legal domain of Intellectual Property Law, encompassing

sub-domains such as trademarks and patents. This lack of research motivated the

selection of the European Patent Office’s (EPO) Boards of Appeal as the focus domain

for this work. While some prior literature has discussed predicting whether patents

may be granted upon their submission [7, 8, 9], to the best of my knowledge no prior

work has computationally analysed the appeals process when a patent submission is

refused.

The benefit of drawing upon case outcome prediction techniques is that it can help us

to better understand the appeal decision-making process and unlock new insights

into the EPO appeals.
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1.2 Aims and Objectives

The aims and objectives of this project are:

Aims

• To assess the feasibility of applying Data Science/AI techniques to EPO appeal

decisions and to understand whether this previously unstudied data source

may be fruitful for further research involving data analytics.

Objectives

• Experiments testing a range of different classification models and

hyper-parameters across both randomly sampled data and year-stratified data

• Evaluating the best classifiers across various metrics such as F1-score, Accuracy

and MCC on both train and test data, as well as the model’s interpretability

• To pre-train custom Word2Vec and Doc2Vec models with data from patents and

appeal judgements to see if a domain specific embedding would result in a

performance boost over generalised embeddings and traditional word

representation techniques i.e. Bag-of-Words

1.3 The European Patent Office

A patent can be defined as “a legal title granting its holder the right – in a particular

country and for a certain period of time – to prevent third parties from exploiting an

invention for commercial purposes without authorisation.” [10]. Effectively it acts as

a mechanism granting a limited commercial monopoly on an invention in exchange

for technical disclosure of such an invention for a period of 20 years [11]. The most

common justification given for this system is that it act as an incentive to individuals

or organizations to disclose information that might otherwise have remained secret,

whilst also fostering a beneficial economic incentive for new inventions [11].

2



Filing patent applications can be costly and time consuming but provides crucial

legal protection for a company or individual’s inventions, so to mitigate this within

many European countries the European Patent Convention 1973 (EPC)1 created a

mechanism for the grant of multiple national patents within a single application [11].

Litigation and infringement are still dealt with by the respective national legal

systems but the grant is handled by the EPO whose role is to administer the

EPC.

For a European patent application to be granted, the Examining Division of the EPO

will assess the substantive content of the application according to the following,

non-exhaustive, criteria [10]:

• Invention: It must be an invention. This is not explicitly defined but things that

are not inventions include those whose commercial exploitation would be

contrary to public order/morality i.e. cloning human beings.

• Novelty: The invention must be new and not considered to be part of the

state-of-the-art.

• Inventive Step: An invention involves an inventive step if it is not obvious to

the skilled person in light of the state of the art.

After being granted by the Examining Division, there is a period of 9 months in

which a third party, i.e. a commercial competitor, may object to the granting of the

patent, which is heard before the Opposition Division. Any party who has been

adversely affected at any stage, by the Examining Division or Opposition Division,

may file an appeal against the decision. The Technical Boards of Appeal are

responsible for appeals concerning refusal of a patent application from the

Examining Division or appeals against decisions of the Opposition Division. There

are other boards such as the Legal Board which deal with different matters. The

decisions granted in appeal proceedings are generally delivered at the oral

proceedings and have the force of res judicata, meaning that the decisions made

1https://www.epo.org/en/legal/epc-1973/2006/convention.html
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cannot be subject to further legal action [12]. Figure 1.1 shows a simplified

representation of the grant and appeal process within the EPO.

Figure 1.1: Patent Application Grant and Appeal Process

1.4 Data Access & Ethics

All work performed in this analysis was in accordance with the terms of use for the

data set out by the EPO and in line with the responsible innovation practices outlined

by the UKRI2. The data is publicly available through the EPO’s proprietary platform3

for bulk data access. The data itself is free to access, but a subscription charge is

necessary to use the bulk download service which was funded by the Data Analytics

and Society CDT4.

2https://www.ukri.org/manage-your-award/good-research-resource-hub/
responsible-innovation/

3https://shop.epo.org/en/Data-and-services/c/subscriptions
4https://datacdt.org/
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2 | Literature Review

In this chapter I will outline some of the key approaches which have been taken

within the AI & Law literature to case outcome prediction. The chapter will proceed

by giving a brief overview of the history of case outcome prediction before exploring

the more recent trends of applying techniques from machine learning (ML) and

natural language processing (NLP). Finally, work concerning the application of ML

to patents will be discussed.

2.1 Symbolic Approaches to Prediction

Since at least the mid-twentieth century there has been an interest in modelling legal

reasoning and legal knowledge in a computational manner. Initially symbolic

approaches were dominant such as rule-based approaches (modelling statutes and

legislation directly), and case-based approaches (CBR) (using judicial precedent),

which were set up as competitors but subsequently became recognised as

complimentary [13]. One of the more prevalent rules-based approaches consisted of

so-called ’expert systems’ which are rules-based reasoning systems typically created

in conjunction with legal experts, who can help to facilitate the process of

decomposing the legal rules and knowledge into a structure which a computer can

process [14]. A common problem with expert systems is what happens when the

“rules run out” [15], as such systems don’t adequately account for the role of judicial

precedent in common-law legal systems.

To account for judicial precedent directly, CBR systems focus on the process of

5



comparing and citing legal cases, in an attempt to mimic the real-world application of

precedent. Early systems such as HYPO [16] and CATO [17] use dimensions or legal

factors, stereotypical fact patterns, to provide the basis for deriving higher order legal

factors which are known to strengthen or weaken a side’s argument [18] in order to

distinguish between cases based upon their similarities and differences. These factors

can be structured hierarchically to generate legal arguments from precedent cases but

such systems were not designed for case outcome prediction.

With the introduction of IBP [19], case outcome prediction became possible from CBR

systems with the incorporation a logical rules-based layer on top of CATO’s factor

hierarchy. Further developments of CATO, include ANGELIC [20] which

incorporates an Abstract Dialectical Framework [21] corresponding to CATO’s factor

hierarchies, allowing case outcome prediction. CBR methods designed for prediction

are capable of achieving tremendous accuracy scores, for example 96.8% in

predicting the outcome of US Trade Secrets Misappropriation cases [20], alongside

generating human comprehensible explanations. However, they often lack the

scalability required to deal with large amounts of varied data, because creating the

systems requires a significant amount of human knowledge-intensive work.

2.2 Machine Learning Approaches to Prediction

Over the last 20 years data-driven techniques have become more prevalent [22, 23] in

case outcome prediction due to a greater abundance of legally relevant data which

has now been digitised in many jurisdictions: for instance, HUDOC 1 for the

European Court of Human Rights (ECtHR). Unlike CBR and expert systems, ML

encompasses a variety of techniques which seek to automatically learn patterns and

meaningful relationships from a given set of training examples and use these

patterns to generate predictions for new heretofore unseen data [24]. Within the

literature concerning case outcome prediction, we can distinguish between two

1https://hudoc.echr.coe.int/
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families of techniques that are frequently used: feature-based methods and neural

methods.

Neural-based methods are part of deep learning (DL) and leverage the advancements

made with artificial neural networks, which have increasingly deep architectures and

enhanced learning capacities [25]. The key difference in the context of NLP between

feature-based and neural-based approaches is that the former uses explicitly

hand-engineered features such as topics or Bag-of-Words, acting as a shallow

representation of the text, whereas the latter typically uses word embeddings, e.g.

Word2Vec [26], as inputs and creates a deeper representation of the text by

automatically learning features at different levels of abstraction.

Feature-based approaches themselves consist of a suite of different ML algorithms

with Support Vector Machines (SVM) being the most prevalent. Aletras et al’s [1]

paper on predicting judicial decisions of the ECtHR, the first work to rely solely on

textual content to predict whether a given case has violated an individual Article of

the European Convention of Human Rights (ECHR), used SVMs as their model of

choice achieving a 79% accuracy in predicting the outcome. Other researchers have

attempted to replicate or expand upon the results found in [40] using similar ECHR

data. [27] compared various ML methods such as k-NN, logistic regression (LR),

random forests (RF) and SVMs on the same ECHR dataset and Articles used in [1] to

provide a comparison in this domain between different methods. The results found

that SVM methods outperformed the others. However, other research in the ECtHR

literature, such as [28], compared a variety of classical ML models and found

Gradient Boosting to be dominant, with SVMs not achieving the best performance

for predicting the outcome of any individual ECHR Article.

However, neural-based approaches using DL usually out-perform feature-based

approaches in a variety of legal domains. For the ECtHR prediction task,

Convolutional Neural Networks (CNN) [29] have achieved 82% train accuracy and a

variety of BERT, called Hierarchical-BERT [30], achieved 82% F1-score. Both are

7



higher than any score a feature-based model in the same domain has achieved. But

despite the increase in performance possible with these methods they are far more

computationally expensive and data-intensive than feature-based approaches.

A key issue with many DL methods is their lack of interpretability. [29] using CNNs

does not offer any attempt at explainability, likely due to the difficulty of extracting

any relevant information from a complex algorithm such as a CNN. Similarly, BERT

models alone, cannot be used to extract the factors which drove their decisions due to

the complexity of their architectures [31]. Despite feature-based methods being more

inherently interpretable, due to the ability to determine feature importance or

interpret the size of the coefficients, many works using feature-based approaches do

not even mention the predictors at all [4, 28, 32].

2.3 Patent Analytics

Over the last two decades there has been an increased interest in applying

computational analysis techniques to the field of Intellectual Property law, and in

particular, for our purposes, patents. The term ’Patinformatics’ coined in [33] refers

to this process of patent data mining and using automated tools to extract insights

and intelligence from patents [34]. A survey by Aristodemou and Tietze [35]

identified 4 key areas of active research in Intellectual Property analytics:

• Knowledge Management: Focuses on evaluating the quality of patent

document and tools for better managing large quantities of documents

• Technology Management: Includes the identification of emerging technology

and technological trends

• Economic Value: For example, identifying the impact of different factors on

patent value

• Information Extraction: A diverse category including name-entity recognition

from patents, patent landscaping, and technological classification i.e.

8



categorising patents into technology areas

From [35] one may note the lack of work concerned directly with patent applications,

the grant procedure or litigation including infringement. The only work relevant to

these topics, that is presented in [35] is [9], within the knowledge management

section. [9] created a patent application prediction system with a ’patentability’

metric using word-age to determine if a patent would be accepted or rejected within

Japan, achieving a rather low score of 60% accuracy. Compared to other areas in

Patinformatics such as technological forecasting [34, 36] or technology area

classification [37, 38], problems concerning the patent at the application stage have

received far less attention in the literature.

Some more recent work has attempted to address this. [8] builds upon the work in [9]

to develop a method for predicting the outcome of US patent applications and

attempting to identify the reasons for rejection using a CNN + Long Short-Term

Memory Network (LSTM) model. They far surpassed [9] achieving 87.7% accuracy

but this is limited by using a small sample of 2,539 patent applications from 2013 to

2020 only relating to a single topic of ’electric vehicle’. Similarly, they claimed to be

able to predict the reasons for rejection with accuracies ranging from the high 80s to

the high 90s but this range was across isolated individual models for each rejection

reason, with no performance given for how the models may work when combined,

i.e. in ensemble, to generate a single, clear reason for a given case. More recent work

in grant prediction [7] for Chinese patents achieved 77% F1-score using XGBoost for

over 400,000 applications in 2011 with a variety of primarily patent-level features

including numerical, categorical and textual (using TF-IDF). They found the most

significant features to be the number of pages in an application, the application

success rate of the previous year and the number of inventors for a patent.

Work in litigation prediction has focused on either predicting whether a patent is

likely to be litigated or not, or understanding factors which contribute to patent

litigation taking place, but neither strand attempts case outcome prediction for

9



patents which are litigated, such as in an infringement case. For example, [39] found

that patents which are litigated have markedly different characteristics to those

which aren’t especially in regard to their acquired characteristics i.e. transaction

history. Whilst [40] used XGBoost to achieve a true positive rate of 75%, with a false

positive rate of 25%, for predicting which US patents would be litigated of those

granted between 2002-05. However, due to the extremely small percentage of patents

which are ever litigated, around 1.1% [40], even these results only amount to

showing that 2.9% of the total positives identified by the model will actually be

litigated. This is an increase on the unconditional probability of 1.1% but

demonstrates the difficulty inherent in rare event prediction.

2.4 Summary

Within this chapter, I have identified a trade-off between scalability and

explainability within the case outcome prediction literature present in the differences

between ML and CBR approaches. Due to the size of the EPO data an ML approach

was chosen to maximise scalability. Whilst the lack of interpretability, and

computational cost of neural-based methods, motivated the choice of feature-based

methods in the analysis. Furthermore, I have demonstrated that within the literature

on AI & Law and patent analytics, case outcome prediction for court related

outcomes for patent cases, such as appeals relating to a patent application’s grant has

not yet been explored.
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3 | Methods

In this chapter, I will outline the methodology used for the experiments conducted

within this work. Figure 3.1 shows a high-level overview of the methodology,

proceeding from initial data extraction to evaluation of the models created. The

chapter will proceed by describing each step in greater detail. All code described for

this, and the following chapter, used Python 3.10.10.

Figure 3.1: Methodology Overview
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3.1 Data and Pre-Processing

There are two distinct datasets from the EPO which form the basis of this work:

Decisions of the EPO Boards of Appeal1 and European Patent Full-Text Data for Text

Analytics2 . This section will provide a description of both datasets, the

pre-processing steps used and their usage within the work presented.

3.1.1 Decisions of the EPO Boards of Appeal

The dataset consists of the complete set of textual decisions from all subsidiary courts

of the EPO Boards of Appeal from 1978-2022, with more than 40,000 decisions. The

data is available in machine-readable XML format, which I used alongside the

Python standard library XML to parse the relevant parts of the data into a pandas

[41] dataframe table, for ease of processing. The data captured ranged from metadata

such as court type, language, appeal number and the board of appeal, to the text of

the decision, split by sub-heading.

Figure 3.2a shows the distribution of the different Boards of Appeal, motivating the

selection of the Technical Board as the focus of this work, since the vast majority of

decisions fall within its remit, similarly, we can see that the majority of decisions are

published in English. Examining the distribution over time of the dataset, Figure

3.2b, it demonstrates a steady increase in the abundance of decisions made until a

peak in 2019. A sharp drop-off can be observed in 2020 and 2022, with 2021 resuming

the trend observed prior to 2020. We can hypothesise that the drop in decisions in

2020 was due to the effects of the COVID-19 pandemic, whilst the dip in 2022 is due

to the publication date of the dataset being prior to the end of 2022.

It is desirable to constrain the time period of the decisions used for the analysis as the

law changes over time and so does the nature of patented inventions. Consequently,

1https://www.epo.org/searching-for-patents/data/bulk-data-sets/
boards-of-appeal-decisions.html

2https://m.epo.org/searching-for-patents/data/bulk-data-sets/text-analytics.html
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the decision was taken to constrain the time period used to decisions rendered after,

and including, the year 2000. Constraining the year, as well as the language and the

board of appeal, while also removing duplicate cases, gives a complete dataset of

21,426 unique decisions.

(a) Board Type

(b) Decision Year

Figure 3.2: Appeal Data Distributions

Extraction

For any supervised classification task in ML, an input and a target label are required

to train the model. As this dataset was not published specifically for the application

of ML, the target label (the decision outcome) has not been explicitly provided and

13



required extracting before training could begin. Similarly, as stated in Sec 1.3, within

the Technical Boards of Appeal there are two distinct types of appeals, those from

cases previously heard before the Examining Division and the Opposition Division.

The decision was taken to separate the data from these two types of appeals, and to

use the cases stemming from the Examining Division as the basis of this work due to

the additional complexities of Opposition Division appeals in determining who is

bringing the appeal within the raw data.

Using simple keyword matching in the SpaCy [42] library for NLP 3 within the

Summary of Facts section of the textual content, I created and tested a series of

patterns to identify the type of appeal. The types of appeal are Opposition Division

appeal, Examining Division appeal, Admissibility and Other. Admissibility

corresponds to cases which solely concern admissibility rather than patent validity,

and Other corresponds to cases which cannot be classified from the existing

patterns.

The patterns were created by manually analysing a set of 50 randomly sampled

appeals and splitting them into types based on the keywords used. The patterns

were as follows4:

• Opposition Division = ["LOWER": ’opposition’, "LOWER": ’division’]

• Admissibility = ["LOWER":’restricted’,"OP":’*’,"OP":’*’,"LOWER": "FUZZY":

"admissibility"]

• Examining Division = ["LEMMA":’refuse’,"OP":’*’,"LOWER":

’european’,"OP":’*’,"LOWER":’patent’,’OP’:’*’,"LOWER":’application’]

The patterns were initially tweaked until 100% accuracy was achieved on the original

50 appeals. To test their generalisability, another random sample of 50 appeals were

selected with an initial success rate of 47/50 classified correctly. The 3 misclassified

3SpaCy was also used for most of the textual pre-processing in this work
4LOWER = lowercase; OP = optional; * = wildcard token; FUZZY = alternate spellings are accept-

able; LEMMA = any acceptable lemmatisation of the word
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appeals were Examining Division appeals using previously uncaptured keyword

patterns. After alteration, the patterns achieved 50/50 and I was satisfied with the

accuracy. Furthermore, I checked a small sample of cases in the ’Other’ category for

glaring omissions in the final dataset but none were observed. After separating out

the Opposition Division cases, and excluding Admissibility and Other I was left with

8,121 Examining Division appeal cases.

The final extraction task was to extract the target label using the Order section of the

decision which provides the board’s outcome. The phrasing of the outcomes are

relatively homogeneous and four different types of outcome were observed: the

appeal was dismissed, the appeal was rejected for being inadmissible, the decision

under appeal was set aside and Other outcomes. These first two outcomes were

treated the same as they both result in the original decision by the Examining

Division being maintained, thus they were labelled as ‘Affirmed’, whereas the

previous decision being set aside reverses the prior outcome so was labelled as

‘Reversed’. The Other outcomes refer to unique or infrequent outcome decisions

such as referrals to the Enlarged Board of Appeal, which the patterns could not

detect and thus were excluded from the analysis. The patterns were as follows:

• Dismissed = ["LOWER":"FUZZY": "appeal",’OP’:’*’,"LOWER": "dismissed"]

• Rejected = ["LOWER":"FUZZY": "appeal",’OP’:’*’,"LOWER": "rejected"]

• Set Aside = ["LOWER":"FUZZY": "appeal",’OP’:’*’,"LOWER": "set","LOWER":

"aside"]

I created the patterns on the same manually analysed random sample of 50 appeals,

used to identify case type, before sampling 50 more appeals to test generalisability.

For both sets of appeals the pattern achieved 100% accuracy providing confidence in

its labelling abilities on this dataset. The distribution of outcomes identified can be

found in Figure 3.3.
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Figure 3.3: Outcome Distributions

Pre-Processing

An EPO appeal decision consists of three main parts: Summary of Facts, Reasons for

Decision and Order. The Summary of Facts outlines the facts of what happened in

the prior decision, the core arguments the appeal is based on and the desired

outcome for the appellants and/or opponents. The Reasons for Decision summarise

the rationale from the board for coming to a particular outcome, which is given in the

Order section. To predict the outcome of appeal cases ex ante we must use only data

which was available before the verdict was given. For EPO appeals the only data

currently available concerns decisions which have already been rendered, thus to test

the possibility of predicting the outcome ex ante we must make the same assumption

as [1]. that there is enough similarity between parts of the text of the published

judgements and the information available prior to the proceedings. To justify this

assumption, we exclude the Reasons for Decision section as this is written in

hindsight to justify an already decided appeal, but use the Summary of Facts, as that
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only summarises information available until the time of the appeal proceedings.

Before the Summary of Facts section is ready to become the input of our ML models,

a number of pre-processing steps must be performed to reduce noise and ensure

consistency across all appeals. These steps are as follows:

1. Remove: whitespace, punctuation, XML tags, HTTP links, non-alpha

characters, individual letters other than ‘i’ and ‘a’ as not valid words, the first 35

characters from each case as they are boilerplate and not case-specific

2. Lowercase all text

3. Outcome is labelled 1 for Affirmed and 0 for Reversed

4. Vary the inclusion of numerical characters, stopwords and lemmatisation as

pre-processing hyperparameters

3.1.2 European Patent Full-Text Data for Text Analytics

This dataset consists of XML-tagged titles, abstracts, descriptions, claims and search

reports of European patent publications from 1978 onwards. The data is split into 40

different files, each averaging around 5-6GB in size and covering patent publications

associated with 100,000 publication numbers. This data is used to train the

embedding models, more detail given in Section 3.2.2. Due to the size of the total

dataset, a subset of 5 files was chosen from this dataset to train the embedding

models to ensure the models would train quickly whilst still providing sufficient text

from 500,000 publication numbers.

As an individual file from this dataset is quite large, a batch streaming approach was

used to load the data in increments of 10,000 publications at a time for training the

embedding models. From this a pandas dataframe was created to filter only English

entries and exclude HTTP links, to the original documents as PDFs, before a number

of pre-processing steps were undertaken:

1. All data including titles, abstracts, claims, descriptions and amendments were
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used

2. Step 1 from the EPO Decisions dataset pre-processing was repeated

3. Stopwords were not excluded to provide more accurate context for embeddings

i.e. ‘not’ is a stopword but is contextually important. Similarly, no

lemmatisation was performed

3.2 Feature Engineering

ML algorithms rely on numerical feature vectors for their input, so in the case of

textual input, words need to be represented numerically. This section will give a brief

overview of the approaches used within the work.

3.2.1 Bag-of-Words and TF-IDF

For feature-based approaches, one of the most common representations is a

bag-of-words (BOW) approach using n-grams, which consist of n number of

tokenized words encoded as a numerical vector. One issue with BOW approaches is

that they do not account for the frequency of words which occur in a document, only

whether they occur or not. A popular method accounting for frequency, normalizes

the word frequency using the term frequency-inverse document frequency measure

(TF-IDF). This measure assumes that less frequent n-grams may be more informative

than common ones as they will be more characteristic of the specific content of a

given document and calculated as5:

TF− IDF (t = term, d = document) = TF(t, d) ∗ IDF(t) and IDF(t) = log
(

n
d f (t) + 1

)
5https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.

TfidfTransformer.html
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3.2.2 Word2Vec and Doc2Vec

Both BOW and TF-IDF suffer a number of drawbacks, including a linear increase in

the length of the vector with the number of unique words in the document,

increasing model training times as well as failing to capture contextual or semantic

meaning within the numerical vector assigned to a word. Word embeddings aim to

remedy this under the assumption that a word’s meaning can be defined by the

words which appear in close proximity to it.

In this work Word2Vec [26] will be used, which uses a feed-forward neural network

to train the embeddings using the Skip-gram method of predicting the context words

for a given focus word. Word2Vec models can be used out-of-the-box which use

news or Wikipedia data to achieve a strong general performance, or they can be

pre-trained on custom data to account for the language used in specialist domains.

One example in the legal domain is Law2Vec [43] which was pre-trained on 492M

words of legal documentation.

The challenge with Word2Vec embeddings for classification is how we allow a

collection of embeddings for individual words to represent an entire document. Two

ways are used in this work, the first is to average the embedding values for each

word to create a document representation, the second is to experiment with a

Doc2Vec embedding [44]. Doc2Vevc is similar to Word2Vec but instead of training an

embedding for each word, it trains an embedding for each document.

3.3 ML Models and Performance Metrics

This section will provide a brief overview of the 4 types of ML model, and the

baseline, which are used for the work, as well as defining the performance metrics

used to evaluate them. All models are implemented using the Sci-Kit Learn library

[45], other than XGBoost which uses [46].
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3.3.1 Logistic Regression (LR)

LR [47] is a relatively simple method, popular in inferential statistics, that can explain

or predict a binary outcome using a set of predictors or covariates to find a

separating hyperplane.

3.3.2 Support Vector Machines (SVM)

A SVM is similar to LR but it works by finding the optimal hyperplane maximising

the distance between the support vectors from each class [48]. The support vectors

are the points which fall closest to the line, while the separating hyperplane is always

1-dimension less than the input vector. To prevent overfitting in situations in which

the number of features vastly outstrips the number of training examples, an issue

common in legal text classification, the so-called ‘kernel trick’ is used when training

to help prevent overfitting and improve performance by mapping the data to a

higher-dimensional feature space using a pairwise similarity matrix between all

example patterns [48].

3.3.3 Random Forests (RF)

RFs are an extension of decision trees using bootstrap aggregation, also known as

bagging, which fits multiple models simultaneously by sampling the dataset

repeatedly, with replacement, creating a number of independent models. RFs extend

bagging by determining, at random, the features considered to construct the tree

with each figure representing a smaller part of the feature space, increasing the

diversity of the answers given to better represent the outcome [49].

3.3.4 XGBoost (XGB)

XGB is another extension of decision trees, but rather than bagging it uses boosting

[50] in which a decision tree is trained in a repeated procedure with each subsequent

iteration giving a higher weighting to the data mis-classified in the previous step,
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forcing the model to pay greater attention to the most difficult to classify data points.

XGB is a computationally efficient execution of the idea of boosting which has led to

significant success, for example in online ML contests on the website Kaggle

[51].

3.4 Performance Metrics

To understand whether the ML models are performing better at classification than

simple random guessing, we can initiate a baseline classifier using a very simple

strategy. For our purposes, the baseline always guesses the majority class present in

the dataset.

The three evaluation metrics used within this work are Accuracy, F1-score and

Matthew’s Correlation Coefficient (MCC). Accuracy is defined as the number of

correct classifications divided by the total number of examples. Whilst easy to

interpret, it is limited as it fails to account for the cost associated with false positives

and false negatives6. Consequently, we will also be using the F1-score, defined as the

harmonic mean between precision and recall as an additional metric to better account

for different error types:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall

However, recent work in AI & Law [52] has begun to adopt MCC as an even more

robust measure for binary classification tasks. This metric, ranging from -1 (worst) to

1 (best), is only high if there are high true positive and negatives, and low false

positives and negatives, accounting for all 4 values present in a confusion matrix.

6https://deepai.org/machine-learning-glossary-and-terms/f-score
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This is more useful in regard to unbalanced datasets, whereas the datasets in this

work are balanced, regardless this metric is reported to follow best practice. This can

be formally defined as follows [53]:

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

3.5 Experimental Setup

This section will outline the setup for the two main experiments forming the basis of

the results, as well as the training of the custom word embeddings. The experiments

in this work were undertaken on Barkla, part of the High-Performance Computing

facilities at the University of Liverpool, UK.

3.5.1 Patent2Vec and PatentDoc2Vec

Custom word and document embeddings, using Word2Vec and Doc2Vec, were

created for this project to compare against out-the-box word embeddings to

understand whether using patent related data would provide a performance

increase. The GenSim library [54] was used for all training. The baseline word

embeddings are a pre-trained Word2Vec [26] and Law2Vec [43]. The corpus used for

my pre-training was 5 files from the European Patent Full-Text data, as well as a

subsection of the EPO Decisions data, namely the training set, further described in

Experiment 17. The rationale for also incorporating EPO Decision data is due to the

lack of legal language used within the patent document data, so to avoid many key

terms in the decisions not having a vector representation, the decision data was used

to supplement the training. The corpus totalled 4.15B non-unique words (tokens) of

which 3.06B words were actually used for training after ignoring unknown words

7Despite only using the training set from experiment 1 for training the embeddings, which are the
same embeddings used in experiment 2 which has a different train-test split, I do not anticipate data
leakage to be a concern. This is due to the nature of Word2Vec simply learning semantic similarity
rather than associating the learnt words with any kind of target objective, such as the outcome.
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and trimming sentence length.

The parameters used for the custom Word2Vec model, hereafter referred to as

Patent2Vec, followed some of the same hyperparameters used for Law2Vec in [43],

such as a threshold of 10-word minimum occurrences to have a trained embedding, a

5-word context window and it is trained for 3 iterations. However, unlike Law2Vec

which creates 200-d embeddings, Patent2Vec uses 300-d embeddings due to the

abundance of data used compared to Law2Vec (which uses 492M tokens). Patent2Vec

is trained using sentences as the input. The Doc2Vec implementation, hereafter

referred to as PatentDoc2Vec, uses the same hyperparameters but uses the full

document as the input.

3.5.2 Experiment 1

The aim of the first experiment is to understand what level of predictive performance

is possible with this dataset using random sampling of the train and test sets. The

first step is to balance the dataset before performing a stratified split into the training

set (90%) and the test set (10%). A balanced training set helps to ensure the dataset

does not have a bias towards the majority class. However, if we leave the test set

balanced, when the real data is imbalanced, this could cause us to overestimate our

predictive performance on an unrealistic test set. Following work such as [28, 30], I

have chosen to create a realistic test set mimicking the original outcome distribution

observed in the data, this can be seen in Table 3.1.

The first experiment conducts a 3-fold cross-validated8 randomized grid search for

each combination of hyperparameters, except the final 3 listed in Table 3.2, for each

combination of non-embedding input (BOW, TF-IDF) and model (LR, SVM, RF,

XGB). For the final 3 hyperparameters (stopwords, numbers and lemmatisation) all 8

possible combinations are attempted for each input + model combination, resulting

in 800 models being trained for each input + model combination. For the embedding

8In each of the 3 iterations the training set is split into thirds with 66.6% used for training and 33.3%
used for validating. The validated performance is then reported.
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Table 3.1: Train and Test set distributions

Training Data Test Data
Affirmed Reversed Total Affirmed Reversed Total

Experiment 1 3086 3086 6172 443 343 786
Experiment 2: 2019-20 2877 2877 5754 538 317 855
Experiment 2: 2021-22 2877 2877 5754 416 235 651
Experiment 2: 2019-22 2877 2877 5754 954 552 1506

inputs (Word2Vec, Patent2Vec, Law2Vec, PatentDoc2Vec) a grid search is used,

testing all possible model hyperparameter combinations, as many of the

pre-processing hyperparameters are omitted since they are only relevant for n-grams.

Similarly, of the final 3 listed hyperparameters only stopwords are varied.

The first stage of training uses 3-fold cross-validation to search over a wide

hyperparameter space in a more computationally efficient manner, but this does not

provide robust enough results to be confident in the generalisation ability of the

models in order to select the best model. To mitigate this a second step is performed

in which 10-fold stratified cross-validation is repeated 10 times for each of the best

hyperparameter combinations for each input + model combination.

3.5.3 Experiment 2

The aim of the second experiment is to test the prediction of only future cases,

following [2], by creating more realistic train and test sets. The issue with experiment

1 is that a case from 2019 may form part of the training set, and be used to predict the

outcome, in the test or validation set, of a case from 2001, which fails to mirror the

time series nature of the application of legal process. To mitigate against this issue,

the first step is to divide the training set and test sets into cases from different years.

The training set is from 2000-2018, and the test set from 2019-2022, with further

divisions also created in the test set to monitor whether there is an observable

degradation in performance the further away the test set is in time from the training

set, as observed in [2]. These further splits are 2019-20 and 2021-22, as can be seen in

Table 3.1. Unlike experiment 1, the test set distributions are unaltered to mimic the
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real case distributions present in those years and understand how successful the

model would have been had it been deployed before the test set began.

The hyperparameter search process is the same as experiment 1, including the

10-fold cross validation step. The crucial difference is that rather than using a cross

validation function which randomly splits the data, TimeSeriesSplit() in Sci-Kit

Learn9 is used, which splits the data according to the order they are given to the

model (ascending date order), to ensure that the validation stage tests for the models

which deliver the best future prediction capabilities. In addition, for the 10-fold cross

validation step, the procedure is not repeated 10 times, as in experiment 1, since the

time series split function always uses the same splits of the data unlike the randomly

stratified cross-validation in experiment 1.

9https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
TimeSeriesSplit.html
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Table 3.2: Hyperparameters

Name Value Description
N-Gram Parameters

ngram_range (1,1),(1,2),(1,3),(1,4),(2,2),
(2,3),(2,4),(3,3),(3,4),(4,4) Length of the n-grams

norm None, ’L2’ Normalisation term for vectors

min_df 2, 5, 10 Minimum document frequency the
terms must appear in to be included

use_idf True, False Use Inverse Document Frequency
weighting (TF-IDF)

Model Parameters
C 0.1, 1, 10, 100 SVM and LR: Regularisation strength

solver ’lbfgs’, ’sag’ LR: Algorithm to use in the optimisation
problem

penalty None, ’L2’ LR: The norm of the penalty parameter

max_iter 100, 250, 500 LR: Maximum iterations for the solver
to converge

n_estimators 100, 200, 300 RF and XGB: Number of trees in the
forest

max_features ’sqrt’, ’log2’ RF: Number of features to consider
when looking for the best split

max_depth 10, 50, 100, None RF: Maximum depth of the tree
num_boost_round 100, 200, 300 XGB: Number of boosting rounds

learning_rate 0.01, 0.02, 0.05 XGB: Step size shrinkage used in update
to prevent overfitting

gamma 0.0, 0.1, 0.2
XGB: Minimum loss reduction to make
a further partition on a leaf node of the
tree

Pre-Processing Parameters
stopwords True, False Include or exclude stopwords
lemmatisation True, False Perform lemmatisation or not
numbers True, False Include or exclude numerical tokens
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4 | Results and Discussion

In this chapter, I will describe the results achieved across the different experiments

conducted. First, I will proceed by analysing the custom word and document

embeddings trained, before discussing the results of experiments 1 & 2, and finally

interpret these results in regard to performance and explainability.

4.1 Word Embeddings

The trained custom word and document embeddings, Patent2Vec and

PatentDoc2Vec, have a final vocabulary size of 387,919 unique words, compared to

the vocabulary of 169,439 words in Law2Vec [43]. No formal procedure for

evaluating the quality of word embeddings exists, rather qualitative approaches are

often used to provide a sense-check that the embeddings learned are sensible for the

domain. One such approach to qualitatively evaluate embeddings is using T-SNE

[55], a dimensionality reduction technique that can project a nonlinearly separable

high dimensionality space into a two-dimensional representation. Using this we can

visualise words which are similar to each other within the embeddings to better

understand the representations.

Figure 4.1 shows an example of this using five domain appropriate words (patent,

law, appeal, outcome, appellant), which appear frequently within the classification

task’s training data. Some of the chosen words are represented as one would expect

i.e. patent is most similar to words such as ‘provisional’ or ‘application’, while others

have more unexpected similarities i.e. law is most similar to ‘henry’ or ‘boyle’, and
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outcome is most similar to words such as ‘chemotherapy’ or ‘prognoses. The word

‘law’ appears to be associated far more with laws as defined within natural science

such as Henry’s law and Boyle’s law, than the legal system. Whereas, ‘outcome’ is

associated with medical and clinical outcomes rather than legal decisions. This is

unsurprising given the training data consisted of a vast number of patent

applications, with many inventions clearly having medical applications or

referencing aspects of scientific theory informing the design or innovation.

This selection of similar words is by no means representative of the large vocabulary,

but the similarities generated are plausible given the context of the data but may fail

to capture the meaning of words which have a legal meaning distinct from that in

other contexts.

Figure 4.1: T-SNE

4.2 Experiments

The number of models trained for each experiment is 7,076 (3 CV) and 2,400 (10 CV),

for a total of 18,952 models between both experiments. Tables 6.1 and 6.2 show the

10-fold cross validated results of both experiments on the training set, reporting the

mean scores of the performance metrics stated in Section 3.4, although experiment 2
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reports a weighted-average of these metrics. The weighted-average is used in

experiment 2 due to the nature of the time series split in the cross-validation

procedure. To preserve the time series the initial splits are smaller than the later splits

as each split permits a greater number of training cases, across a larger period of

time. The weighted average is calculated for n weights and x splits:

Weights : wi =
i
n

f or i = 1, ..., n.

WeightedAverage :
n

∑
i=1

wi ∗ xi
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Table 4.1: Patent Refusal: Experiment 1 (2 d.p.) - Mean and Standard Deviation of 10-fold Cross-Validation

N-Grams TF-IDF Word2Vec
Acc F1 MCC Acc F1 MCC Acc F1 MCC

SVM 85.87 ±1.38 85.78 ±1.39 71.77 ±2.75 86.08 ±1.38 85.90 ±1.39 72.21 ±2.76 71.40 ±1.46 71.31 ±1.63 42.84 ±2.93

LR 85.73 ±1.28 85.51 ±1.34 71.50 ±2.56 85.55 ±1.36 85.51 ±1.35 71.14 ±2.72 71.38 ±1.59 71.25 ±1.72 42.78 ±3.17

RF 85.07 ±1.32 85.06 ±1.34 70.16 ±2.66 85.02 ±1.38 84.79 ±1.46 70.10 ±2.76 67.61 ±1.78 65.60 ±2.04 35.48 ±3.57

XGB 86.47 ±1.40 86.37 ±1.45 72.99 ±2.81 86.58 ±1.19 86.47 ±1.22 73.19 ±2.38 70.76 ±1.56 70.18 ±1.74 41.58 ±3.12

Patent2Vec Law2Vec PatentDoc2Vec
Acc F1 MCC Acc F1 MCC Acc F1 MCC

SVM 73.16 ±1.46 73.17 ±1.59 46.35 ±2.92 70.25 ±1.72 70.15 ±1.89 40.54 ±3.43 72.24 ±1.60 71.76 ±1.79 44.55 ±3.20

LR 73.11 ±1.57 73.11 ±1.69 46.26 ±3.15 70.08 ±1.57 69.88 ±1.73 40.19 ±3.16 72.42 ±1.50 72.04 ±1.66 44.90 ±3.00

RF 69.51 ±1.71 67.85 ±1.99 39.25 ±3.42 67.58 ±1.85 65.62 ±2.19 35.43 ±3.71 70.78 ±1.75 69.88 ±1.95 41.65 ±3.49

XGB 72.47 ±1.57 71.97 ±1.78 45.00 ±3.15 70.24 ±1.72 69.58 ±1.95 40.56 ±3.44 73.34 ±1.66 72.87 ±1.91 46.73 ±3.30
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Table 4.2: Patent Refusal: Experiment 2 (2 d.p.) - Weighted Average and Standard Deviation of 10-fold Time Series Split Cross-
Validation

N-Grams TF-IDF Word2Vec
Acc F1 MCC Acc F1 MCC Acc F1 MCC

SVM 84.23 ±3.07 85.14 ±5.56 67.76 ±6.05 84.17 ±3.47 85.13 ±5.88 67.69 ±6.67 68.17 ±2.06 70.11 ±4.69 35.53 ±3.82

LR 84.50 ±2.99 85.43 ±5.38 68.31 ±5.82 84.42 ±3.22 85.27 ±5.56 68.19 ±6.25 68.80 ±2.07 70.65 ±4.19 36.78 ±3.77

RF 82.27 ±3.93 83.03 ±7.92 63.82 ±7.45 82.53 ±3.95 82.99 ±7.48 64.59 ±7.08 64.33 ±2.21 62.15 ±7.97 29.85 ±3.98

XGB 84.80 ±2.57 85.76 ±4.61 68.95 ±4.94 84.32 ±2.83 85.32 ±5.19 67.89 ±5.63 67.81 ±2.54 68.45 ±6.30 35.09 ±4.74

Patent2Vec Law2Vec PatentDoc2Vec
Acc F1 MCC Acc F1 MCC Acc F1 MCC

SVM 71.20 ±1.78 73.54 ±4.94 41.07 ±3.13 67.29 ±1.74 69.64 ±5.33 33.15 ±2.72 69.72 ±2.02 71.41 ±5.01 38.73 ±4.13

LR 71.10 ±1.68 73.43 ±4.80 40.87 ±2.99 67.03 ±1.55 69.55 ±4.85 32.74 ±3.06 70.39 ±2.12 72.11 ±4.79 39.97 ±4.15

RF 65.80 ±2.52 64.31 ±8.27 32.28 ±4.47 64.06 ±2.76 61.26 ±8.76 29.82 ±5.02 67.42 ±2.46 66.66 ±9.48 34.87 ±4.05

XGB 69.45 ±2.22 70.19 ±6.84 38.17 ±5.32 67.45 ±2.22 67.87 ±7.23 34.33 ±3.17 69.22 ±2.66 69.76 ±7.09 38.00±4.67
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Both experiments demonstrate strong results in the binary classification task with

experiment 1 producing higher scores overall (86.47% F1) than experiment 2 (85.76%

F1). We can compare this to a majority baseline, which achieves 56%, meaning that

the models are outperforming the baseline by a large margin. Experiment 1

outperforming experiment 2 is unsurprising as experiment 1 is trained on a higher

volume of decisions, and the time series split procedure in experiment 2 means some

splits are being trained with a very low number of cases, so despite mitigating this

with a weighted average, a drop-in performance for the cross-validation stage was

expected1.

An interesting pattern emergent across both experiments is the dominance of BOW

text representation over the word embeddings. For example, in experiment 1 the best

BOW approach achieves 85.76 F1-score, compared to the best word embedding

(Patent2Vec) which achieves 73.17% F1-score, a 12% performance difference. This

may have occurred because word embeddings only represent individual words, thus

to represent an entire document you have to combine the individual word

embeddings into a single representation. The choice to average the word

embeddings, could, across a large document lose crucial information in representing

the semantic space, causing a decrease in performance.

However, this issue should not plague PatentDoc2Vec, which is trained to create

document representations from scratch, yet PatentDoc2Vec (72.11% F1 in experiment

1) actually performs worse than Patent2Vec (73.54% F1 in experiment 1) across both

experiments. PatentDoc2Vec’s lack of performance might be due to the difference

between the training data for PatentDoc2Vec and the actual data represented in the

experiments. The vast majority of documents fed to PatentDoc2Vec were sections of

patent applications, such as the claims, with only a small minority actually being the

‘summary of facts’ sections from decision documents. Despite the nature of the

majority of the input in Patent2Vec and PatentDoc2Vec being substantively different

1The nature of the time series split is also why the standard deviation for experiment 2’s results is
far greater than experiment 1.
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to the training data, a statistically significant boost in performance over the other

word embeddings (Word2Vec and Law2Vec) can be observed from the confidence

intervals of the results across both experiments in Fig 6.6. While the difference in

performance is small between the custom and off-the-shelf embeddings, this result

still supports the importance of training domain specific embeddings.

Figure 4.2: Word Embeddings Confidence Intervals

Another emergent pattern is that XGBoost tends to achieve the best results across the

different inputs, and for both experiments is the classifier for the best performing

model. However, the second best performing classifier is the SVM, achieving the best

F1-scores in experiment 1 for all embedding methods other than PatentDoc2Vec, with

LR also performing well in experiment 2. Whereas the RFs are consistently the worst

performing classifier across all input/model combinations. Though it may be noted

that overall all models achieve similar results. The best models and their associated

hyperparameters can be observed in Table 6.5.
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Table 4.3: Best models and Their Selected Hyperparameters

Experiment Model Model Hyperparameters Input Input Hyperparameters Stopwords Lemma Numbers

1 XGBoost

num_boost_round: 200
n_estimators: 300
learning_rate: 0.05
gamma: 0.1

TF-IDF

use_idf: True
norm: L2
ngram_range: (1,4)
min_df: 5

False True False

2 XGBoost

num_boost_round: 300
n_estimators: 300
learining_rate: 0.05
gamma: 0.2

Bag of Words

use_idf: False
norm: None
ngram_range: (1,4)
min_df: 10

True True True
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Table 4.4: Test Set Results

Patent Refusal
Acc F1 MCC Baseline

Experiment 1 85.24 85.09 70.33 56.36
Experiment 2: 2019-2020 87.95 87.07 74.13 62.92
Experiment 2: 2021-2022 84.49 83.41 66.91 63.90
Experiment 2: 2019-2022 86.45 85.48 70.97 63.43

Table 4.4 shows the results of applying the best models, from Table 6.5, to the test

data. Initially we can observe that the baselines of each experiment are clearly

outperformed by the models and that the scores of the models align closely to the

cross-validated training data results, demonstrating the ability of these models to

generalise to unseen data. In regard to the robustness of the models we can see that

in addition to high accuracy, they achieve high F1 and MCC scores. Furthermore, we

can check the robustness by examining the confusion matrices for each experiment’s

test data to understand whether the models are bias towards misclassifying either

affirmed or reversed outcome decisions more frequently. Examining Fig 4.3 we

observe that for experiment 1 there is a slight bias towards misclassifying affirmed

cases as reversed cases, whereas in all parts of experiment 2 the opposite holds, in

which reversed cases are more frequently misclassified than affirmed cases.

Generally, the difference is not too great between the misclassification of both

outcomes, and the discrepancies that do exist, especially in experiment 2, may be due

to the imbalance of the test sets.

We can also observe that the results of the variants of experiment 2, other than

2021-22, outperform experiment 1. These results are contrary to the observed

degradation in performance with the future prediction task compared to the random

sampling approach, as is the case in [2]. One reason the future prediction results may

be so strong is due to the use of the time series split for cross validation, meaning we

are only picking models which are good at predicting future outcomes. Another may

be the stability of a domain like patents and the criteria for their grant by the EPO

Boards of Appeal, which have received little substantive change since its inception.
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However, a small degradation is observed between the 2019-20 test set and the

2021-22 test set. This may support the observation in [2] that the further away the test

set is from the training data the more performance decreases, or it could be an

artefact of the smaller test set, as 2019-20 has 200 less cases than 2021-22.

(a) Experiment 1 (b) Experiment 2: 2019-2020

(c) Experiment 2: 2021-2022 (d) Experiment 2: 2019-2022

Figure 4.3: Confusion Matrices of Test Data Results

4.3 Interpretation

In order to better understand the results of the models we can examine the most

important features in deciding the outcome of an appeal. We will apply this to the

results of experiment 1 to understand the trends and key factors across the entire
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timespan of the dataset. Examining Fig 6.3, we can observe that many of the top

features are administrative in nature such as ‘the notification of’, ‘proceeding be

appoint in’ or ‘the present application’, rather than relating to more substantive legal

questions about whether the given invention had, for example an inventive step.

There are also a number of outliers to this trend with phrases such as ‘five new’ (rated

as the most important feature) and ‘or organ’, terms whose significance is difficult to

understand without wider context. A limitation of XGBoost’s feature importance is

that it does not give an indication of which outcome these features favoured.

Figure 4.4: XGBoost Feature Importance

To observe the factors which were most significant for a particular outcome we can

look at the coefficients of the SVM model in which the highest positive factors

correspond to the affirmed outcome and the lowest negative factors to the reversed

outcome. Fig 6.4 shows a similar trend to the XGBoost feature importance, in that

administrative factors are the most prevalent for both outcomes, but there is a greater

correlation with legal factors present. Significant to the affirmed outcome are phrases

such as ‘the claims do not’, ‘to recite the claims’ and ‘an inventive step on’; and for

the reversed outcome there is ‘since it was obvious’ and ‘skilled person has no’. For

the affirmed outcome the consideration of ‘claims’ seems sensible as the ‘claims’

section of a patent is a crucial section in assessing its validity, and the ‘inventive step’
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a part of the criteria outlined in Section 1.3. The more surprising features are those

for the reversed outcome, in which the patent is granted after appeal, as phrases such

as ‘since it was obvious’ and ‘skilled person has no’ appear to relate to the part of the

criteria concerning whether the invention would be obvious to someone skilled in

the art and if it was obvious, the patent ought to be refused. It is unsurprising these

phrases would appear in the summary of facts since it may describe why the patent

was initially rejected, but the model using the ‘obviousness’ of a patent to decide that

it should be granted could be a potential misapplication of the patent grant

procedure.

Figure 4.5: SVM Feature Importance

From this analysis, we can conclude that despite the strong performance of the

models in regard to performance, the factors the models uses to decide do not

sufficiently correspond to the real legal factors, or the correct process of legal

reasoning within the domain. This is a problem which has previously been identified

for NLP approaches in case outcome prediction [56].
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5 | Conclusion

In this chapter I will summarise the experiments and results achieved, before

outlining some limitations and directions for future work concerning this topic and

dataset.

5.1 Summary

The aim of this project was to assess the feasibility of applying AI techniques to

decisions from the European Patent Office’s Boards of Appeal relating to the

Examining Division. Two main experiments were conducted to achieve this testing

the performance when randomly sampling the data, compared to year-stratified data

for future prediction, using a variety of models, inputs (including custom word

embeddings) and a large hyperparameter search to find the best models. The project

was successful in showing the viability of this domain and dataset for further study,

achieving strong predictive performance of 85% accuracy in experiment 1 and 86% in

experiment 2, far higher than the majority baseline of ≈60%. Further analysis in

regard to interpretability did demonstrate a lack of correlation between legally

relevant factors and the most important features, highlighting the need to ensure that

decision-making systems conform to legal reasoning.

5.2 Limitations

A few of the limitations of this work are:
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• The ‘summary of facts’ is written after the appeal hearing takes place, so

despite this section attempting to only explain what happened before the

hearing, it is inevitably susceptible to bias, framing the summary around the

outcome of the appeal

• The BOW approaches (N-grams and TF-IDF) were very slow to train due to the

large size of the vectors, even with varying the minimum frequency within the

corpus for an n-gram to be included. Dimensionality reduction techniques,

such as Principal Component Analysis, were considered but would have an

adverse effect on the interpretability of the bag-of-words models so their

inclusion was rejected for this project

• This work does not consider appeals from outcomes of the opposition division,

which would be required to give a full analysis into the feasibility of applying

ML to appeals relating to a patent’s validity

5.3 Future Work

In regard to further work, it would be important to perform a more in-depth

interpretability analysis using explainable AI methods such as SHAP (SHapley

Additive exPlanations) [57], to help understand why certain outcomes may have

been predicted by the model for specific cases. Special attention should also be paid

to the correspondence between explicit legally relevant factors and the reasoning

undertaken by proposed ML models. Furthermore, using more advanced

state-of-the-art methods such as BERT, Hierarchical Attention Networks or

Convolutional Neural Networks, may be beneficial in increasing the predictive

power achievable.
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Table 6.1: Patent Refusal: Experiment 1 (2 d.p.) - Mean and std dev of 10-fold cross-validation

N-Grams TF-IDF Word2Vec
Acc F1 MCC Acc F1 MCC Acc F1 MCC

SVM 85.34 ±1.14 85.21 ±0.98 70.72 ±2.27 85.63 ±1.26 85.45 ±1.18 71.31 ±2.52 71.63 ±1.44 71.53 ±1.77 43.29±2.88

LR 85.29 ±1.57 85.11 ±1.56 70.61 ±3.14 85.34 ±1.28 85.15 ±1.19 71.72 ±2.57 71.66 ±1.26 71.49 ±1.57 43.35 ±2.51

RF 84.79 ±0.83 84.74 ±0.95 69.60 ±1.66 85.00 ±1.31 84.85 ±1.31 70.03 ±2.61 67.22 ±0.99 65.10 ±1.20 34.71 ±2.00

XGB 86.68 ±1.09 86.58 ±1.16 73.39 ±2.18 86.88 ±0.85 86.81 ±0.79 73.78 ±1.72 70.06 ±1.31 69.60 ±1.61 40.15 ±2.60

Patent2Vec Law2Vec PatentDoc2Vec
Acc F1 MCC Acc F1 MCC Acc F1 MCC

SVM 73.16 ±1.46 73.17 ±1.59 46.35 ±2.92 70.25 ±1.72 70.15 ±1.89 40.54 ±3.43 72.24 ±1.60 71.76 ±1.79 44.55 ±3.20

LR 73.07 ±1.82 73.03 ±1.99 46.18 ±3.63 69.75 ±1.34 69.54 ±1.45 39.52 ±2.68 73.14 ±1.71 72.90 ±1.70 46.30 ±3.42

RF 69.30 ±1.05 67.51 ±1.13 38.83 ±2.11 67.43±1.33 65.54 ±1.27 35.09 ±2.72 70.14 ±1.77 69.13 ±1.93 40.39 ±3.55

XGB 72.23 ±1.46 71.78 ±1.51 44.49 ±2.92 69.88 ±1.13 69.28 ±1.30 49.83 ±2.30 73.27 ±1.51 72.91 ±1.61 46.56 ±3.02
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Table 6.2: Patent Refusal: Experiment 2 (2 d.p.) - Weighted Average 10-fold TimeSeriesSplit

N-Grams TF-IDF Word2Vec
Acc F1 MCC Acc F1 MCC Acc F1 MCC

SVM 83.66 ±3.55 84.76 ±5.30 66.61 ±6.97 82.88 ±4.04 84.08 ±5.52 65.02 ±7.77 68.46 ±2.13 70.56 ±4.51 36.07 ±4.04

LR 83.78 ±3.61 84.90 ±5.12 66.88 ±7.12 83.02 ±3.88 84.23 ±5.51 65.38 ±7.53 68.52 ±2.27 70.45 ±4.64 36.20 ±4.37

RF 82.21 ±3.51 82.81 ±7.99 63.86 ±6.43 81.99 ±3.80 82.57 ±8.05 63.35 ±6.84 64.49 ±2.67 61.07 ±8.42 28.33 ±4.23

XGB 85.34 ±3.83 86.11 ±6.41 70.02 ±7.65 84.15 ±3.20 85.07 ±5.69 67.61 ±6.25 67.63 ±2.18 68.23 ±6.81 34.68 ±4.16

Patent2Vec Law2Vec PatentDoc2Vec
Acc F1 MCC Acc F1 MCC Acc F1 MCC

SVM 70.94 ±2.42 73.45 ±5.31 40.55 ±4.41 64.73 ±3.14 67.29 ±5.57 28.19 ±5.34 69.79 ±1.88 71.66 ±4.68 38.88 ±3.89

LR 70.96 ±1.72 73.34 ±4.75 40.57 ±2.90 67.08 ±1.60 69.47 ±4.91 32.80 ±2.84 69.46 ±1.89 71.45 ±4.19 37.88 ±3.74

RF 65.01 ±2.07 63.49 ±7.97 30.74 ±3.57 63.63 ±2.51 60.72 ±9.11 28.97 ±4.11 66.92 ±2.27 65.84 ±9.62 34.02 ±3.53

XGB 68.83 ±2.37 69.82 ±6.23 36.88 ±4.67 67.73 ±2.66 67.86 ±7.93 35.10 ±4.45 69.72 ±2.38 70.29 ±7.40 38.72±4.32
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Table 6.3: Opposition Division: Experiment 1 (2 d.p.) - Mean and std dev of 10-fold cross-validation

N-Grams TF-IDF Word2Vec
Acc F1 MCC Acc F1 MCC Acc F1 MCC

SVM 70.74 ±1.08 71.27 ±1.11 41.51 ±2.17 70.29 ±1.11 70.87 ±1.11 40.63 ±2.20 62.60 ±1.34 62.15 ±1.45 25.22 ±2.70

LR 70.86 ±1.68 71.30 ±1.67 41.74 ±3.36 70.55 ±0.91 71.05 ±1.01 41.13 ±1.82 62.90 ±1.55 62.43 ±1.94 25.82 ±3.10

RF 76.56 ±1.51 77.00 ±1.56 53.18 ±3.03 76.83 ±0.96 77.28 ±0.79 53.72 ±1.89 65.49 ±1.51 66.61 ±1.84 31.08 ±3.06

XGB 79.90 ±0.94 80.66 ±0.83 60.01 ±1.84 79.14 ±1.15 79.77 ±1.14 58.42 ±2.29 66.50 ±1.41 67.78 ±1.45 33.13 ±2.85

Patent2Vec Law2Vec PatentDoc2Vec
Acc F1 MCC Acc F1 MCC Acc F1 MCC

SVM 62.76 ±2.25 62.28 ±2.68 25.54 ±4.48 61.90 ±1.25 61.14 ±1.39 23.81 ±2.49 62.77 ±1.78 63.07 ±1.53 25.57 ±3.55

LR 62.81 ±2.26 62.45 ±2.43 25.64 ±4.52 61.94 ±1.73 61.23 ±2.10 23.89 ±3.46 62.76 ±1.70 62.91 ±1.47 25.54 ±3.40

RF 66.21 ±1.57 66.55 ±1.57 32.44 ±3.14 65.11 ±1.91 65.90 ±2.03 30.28 ±3.83 69.25 ±1.32 71.54 ±0.98 39.02 ±2.54

XGB 67.38 ±2.02 68.07 ±2.16 34.82 ±4.05 65.26 ±1.63 66.44 ±1.37 30.61 ±3.22 69.01 ±1.09 70.89 ±0.74 38.34 ±2.07
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Table 6.4: Opposition Division: Experiment 2 (2 d.p.) - Weighted Average 10-fold TimeSeriesSplit

N-Grams TF-IDF Word2Vec
Acc F1 MCC Acc F1 MCC Acc F1 MCC

SVM 68.88 ±1.68 69.39 ±2.11 37.94 ±3.30 68.17 ±1.89 68.05 ±2.79 36.50 ±3.72 62.16 ±3.11 61.63 ±3.18 24.39 ±6.24

LR 68.79 ±1.98 69.10 ±2.25 37.71 ±3.93 67.96 ±1.96 68.01 ±2.26 36.01 ±3.91 62.46 ±2.60 61.77 ±3.00 25.01 ±5.20

RF 73.17 ±2.60 72.12 ±2.93 46.55 ±5.30 73.53 ±3.00 72.66 ±3.37 47.19 ±6.02 64.02 ±3.34 61.45 ±3.95 28.40 ±6.91

XGB 76.74 ±3.29 77.48 ±3.09 53.65 ±6.53 75.91 ±2.79 76.72 ±2.99 51.94 ±5.56 65.10 ±3.45 64.48 ±4.22 30.30 ±6.95

Patent2Vec Law2Vec PatentDoc2Vec
Acc F1 MCC Acc F1 MCC Acc F1 MCC

SVM 62.01 ±3.14 61.90 ±3.55 24.06 ±6.25 59.26 ±2.92 58.04 ±2.72 18.60 ±5.92 61.27 ±3.04 61.35 ±3.35 22.55 ±6.08

LR 62.24 ±2.46 62.17 ±2.77 24.55 ±4.89 60.95 ±1.95 59.80 ±2.33 22.02 ±3.99 61.28 ±2.84 61.27 ±3.15 22.58 ±5.66

RF 64.04 ±3.92 62.11 ±5.09 28.30 ±7.81 62.57 ±3.33 60.37 ±4.35 25.38 ±6.79 67.35 ±3.29 66.14 ±4.55 34.82 ±6.57

XGB 65.64 ±3.69 65.65 ±4.52 31.30 ±7.34 63.22 ±3.06 62.66 ±3.37 26.52 ±6.10 69.21 ±3.02 69.30 ±3.49 38.48 ±6.03
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Table 6.5: Best models and their selected parameters

Board of Appeal Experiment Model Model Hyperparameters Input Input Hyperparameters Stopwords Lemma Numbers

Patent Refusal 1 XGBoost
n_estimators: 300
learning_rate: 0.05
gamma: 0.0

TF-IDF

use_idf: True
norm: L2
ngram_range: (1,4)
min_df: 2

False False False

Patent Refusal 2 XGBoost
n_estimators: 300
learining_rate: 0.05
gamma: 0.2

Bag of Words

use_idf: False
norm: L2
ngram_range: (1,4)
min_df: 2

False False False

Opposition Division 1 XGBoost
n_estimators: 300
learning_rate: 0.02
gamma: 0.0

Bag of Words

use_idf: False
norm: None
ngram_range: (1,2)
min_df: 5

True True True

Opposition Division 2 XGBoost
n_estimators: 300
learning_rate: 0.05
gamma: 0.0

TF-IDF

use_idf: True
norm: L2
ngram_range: (1,4)
min_df: 10

True False False
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Table 6.6: Test data results for Experiment 1 and 2

Patent Refusal Opposition Division Average
Acc F1 MCC Baseline Acc F1 MCC Baseline Acc F1 MCC Baseline

Experiment 1 85.24 85.09 70.33 43.64 78.67 78.66 58.29 54.33 81.96 81.89 64.31 48.99
2019-2020 87.95 87.07 74.13 37.08 79.29 79.16 58.57 56.01 83.62 83.12 66.35 46.55
2021-2022 84.49 83.41 66.91 36.1 80.83 80.46 60.10 57.82 82.66 81.94 63.51 46.96
2019-2022 86.45 85.48 36.65 36.65 80.08 79.84 59.83 56.94 83.27 82.66 48.24 46.795
Overall 82.88 82.40 60.60 47.32
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(a) Patent Refusal (b) Opposition Division

Figure 6.1: Experiment 1: Confusion Matrices Test Results
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(a) Patent Refusal 2019-2020 (b) Patent Refusal 2021-2022 (c) Patent Refusal 2019-2022

(d) Opposition Division 2019-
2020

(e) Opposition Division 2021-
2022

(f) Opposition Division 2019-
2022

Figure 6.2: Experiment 2: Confusion Matrices Test Results
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(a) Patent Refusal

(b) Opposition Division

Figure 6.3: XGBoost Feature Importance
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(a) Patent Refusal

(b) Opposition Division

Figure 6.4: SVM Feature Importance
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Figure 6.5: Word Embeddings boxplot

Figure 6.6: Word Embeddings CI
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